版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如直線與平行但不重合,則的值為().A.或2 B.2 C. D.2.已知直線經(jīng)過兩點,則的斜率為()A. B. C. D.3.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調(diào)遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.34.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含5.已知角、是的內(nèi)角,則“”是“”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件6.在中,分別是角的對邊,若,且,則的值為()A.2 B. C. D.47.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a49.傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.201810.不等式組所表示的平面區(qū)域的面積為()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則的值為.12.已知數(shù)列的前n項和,則___________.13.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.14.已知數(shù)列滿足:(),設(shè)的前項和為,則______;15.正項等比數(shù)列中,存在兩項使得,且,則的最小值為______.16.?dāng)?shù)列中,,,,則的前2018項和為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角所對的邊分別為,且.(1)求的值;(2)若,求的面積.18.等差數(shù)列的前項和為,求數(shù)列前項和.19.已知等差數(shù)列滿足,且.(1)求數(shù)列的通項;(2)求數(shù)列的前項和的最大值.20.?dāng)?shù)列的前n項和滿足.(1)求證:數(shù)列是等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,求數(shù)列的前n項.21.若不等式恒成立,求實數(shù)a的取值范圍。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
兩直線斜率相等,且截距不相等?!驹斀狻拷馕觯河深}意得,,解得或2,經(jīng)檢驗時兩直線重合,故.故選C.【點睛】本題考查兩直線平行,屬于基礎(chǔ)題.2、A【解析】
直接代入兩點的斜率公式,計算即可得出答案?!驹斀狻抗蔬xA【點睛】本題考查兩點的斜率公式,屬于基礎(chǔ)題。3、C【解析】
利用函數(shù)奇偶性和單調(diào)性,通過舉例和證明逐項分析.【詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調(diào)遞增函數(shù),所以,若遞減,設(shè),且,且,所以,則,則,與題設(shè)矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【點睛】本題函數(shù)性質(zhì)與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.4、B【解析】
計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【詳解】圓心距相交故答案選B【點睛】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.5、C【解析】
結(jié)合正弦定理,利用充分條件和必要條件的定義進行判斷【詳解】在三角形中,根據(jù)大邊對大角原則,若,則,由正弦定理得,充分條件成立;若,由可得,根據(jù)大邊對大角原則,則,必要條件成立;故在三角形中,“”是“”的充要條件故選:C【點睛】本題考查充分條件與必要條件的應(yīng)用,利用正弦定理確定邊角關(guān)系,三角形大邊對大角原則應(yīng)謹(jǐn)記,屬于基礎(chǔ)題6、A【解析】
由正弦定理,化簡求得,解得,再由余弦定理,求得,即可求解,得到答案.【詳解】在中,因為,且,由正弦定理得,因為,則,所以,即,解得,由余弦定理得,即,解得,故選A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.7、D【解析】
由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:
該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,
故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎(chǔ)知識,考查推理能力與計算能力,是中檔題.8、C【解析】
在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,
在驗證時,把當(dāng)代入,左端.
故選:C.【點睛】此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.9、A【解析】
通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【詳解】根據(jù)題意可知:則由…可得所以故選:A【點睛】本題考查不完全歸納法的應(yīng)用,本題難點在于找到,屬難題,10、D【解析】
畫出可行域,根據(jù)邊界點的坐標(biāo)計算出平面區(qū)域的面積.【詳解】畫出可行域如下圖所示,其中,故平面區(qū)域為三角形,且三角形面積為,故選D.【點睛】本小題主要考查線性規(guī)劃可行域面積的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
,故答案為3.12、17【解析】
根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數(shù)列前n項和通項公式的應(yīng)用,遞推法求數(shù)列的項,屬于基礎(chǔ)題.13、【解析】
由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.14、130【解析】
先利用遞推公式計算出的通項公式,然后利用錯位相減法可求得的表達式,即可完成的求解.【詳解】因為,所以,所以,所以,又因為,不符合時的通項公式,所以,當(dāng)時,,所以,所以,所以,所以.故答案為:.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式以及錯位相減法的使用,難度一般.利用遞推公式求解數(shù)列的通項公式時,若出現(xiàn)了的形式,一定要注意標(biāo)注,同時要驗證是否滿足的情況,這決定了通項公式是否需要分段去寫.15、【解析】
先由已知求出公比,然后由求出滿足的關(guān)系,最后求出的所有可能值得最小值.【詳解】設(shè)數(shù)列公比為,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分別為2,,2,,,最小值為.故答案為:.【點睛】本題考查等比數(shù)列的性質(zhì),考查求最小值問題.解題關(guān)鍵是由等比數(shù)列性質(zhì)求出滿足的關(guān)系.接著求最小值,容易想到用基本不等式求解,但本題實質(zhì)上由于,因此對應(yīng)的只有5個,可以直接代入求值,然后比較大小即可.16、2【解析】
直接利用遞推關(guān)系式和數(shù)列的周期求出結(jié)果即可.【詳解】數(shù)列{an}中,a1=1,a2=2,an+2=an+1﹣an,則:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:數(shù)列的周期為1.a(chǎn)1+a2+a2+a4+a5+a1=0,數(shù)列{an}的前2018項和為:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案為:2【點睛】本題考查的知識要點:數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列的周期的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)首先利用正弦定理邊化角,再利用即可得到答案;(2)利用余弦定理和面積公式即可得到答案.【詳解】(1),所以,所以,即因為,所以,所以,即.(2)因為,所以.由余弦定理可得,因為,所以,解得.故的面積為.【點睛】本題主要考查解三角形的綜合應(yīng)用,意在考查學(xué)生的基礎(chǔ)知識,轉(zhuǎn)化能力及計算能力,難度不大.18、【解析】
由已知條件利用等差數(shù)列前項和公式求出公差和首項,由此能求出,且,當(dāng)時,,當(dāng)時,?!驹斀狻拷獾?,設(shè)從第項開始大于零,則,即當(dāng)時,當(dāng)時,綜上有【點睛】本題考查數(shù)列的前項和的求法,是中檔題,注意等差數(shù)列的函數(shù)性質(zhì)的運用。19、(1)(2)144【解析】
(1)把帶入通項式即可求出公差,從而求出通項。(2)根據(jù)(1)的結(jié)果以及等差數(shù)列前項和公式即可?!驹斀狻浚?)設(shè)公差為,則則則(2)由等差數(shù)列求和公式得則所以當(dāng)時,有最大值144【點睛】本題主要考查了等差數(shù)列的通項以及等差數(shù)列的前和公式,屬于基礎(chǔ)題20、(1)見證明;(2)【解析】
(1)利用與的關(guān)系,即要注意對進行討論,再根據(jù)等比數(shù)列的定義,證明為常數(shù);(2)利用錯位相減法對數(shù)列進行求和.【詳解】解(1)當(dāng)時,,所以因為①,所以當(dāng)時,②,①-②得,所以,所以,所以是首項為2,公比為2的等比數(shù)列.(2)由(1)知,,所以,因為,所以,設(shè)的公差為,則,所以所以,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度代理記賬與財務(wù)數(shù)據(jù)分析及報告服務(wù)合同4篇
- 2025年度臨建板房臨時教室搭建與教學(xué)設(shè)施配備合同4篇
- 2025年出租車座套廣告媒體資源購買合同范本4篇
- 二零二五版家具銷售區(qū)域代理授權(quán)合同3篇
- 二零二五年度商業(yè)地產(chǎn)代持經(jīng)營合同示范文本4篇
- 二零二五年度車輛入股汽車改裝廠合作協(xié)議3篇
- 2025年城市綠化帶施工與養(yǎng)護承包合同范本4篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)園場地租賃及特色餐飲經(jīng)營合作合同3篇
- 2025版房產(chǎn)購買貸款合同領(lǐng)取方法全解密3篇
- 二零二五版煤炭市場居間代理服務(wù)合同4篇
- 使用錯誤評估報告(可用性工程)模版
- 公司章程(二個股東模板)
- GB/T 19889.7-2005聲學(xué)建筑和建筑構(gòu)件隔聲測量第7部分:樓板撞擊聲隔聲的現(xiàn)場測量
- 世界奧林匹克數(shù)學(xué)競賽6年級試題
- 藥用植物學(xué)-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請表
- UL_標(biāo)準(zhǔn)(1026)家用電器中文版本
- 國網(wǎng)三個項目部標(biāo)準(zhǔn)化手冊(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評論
0/150
提交評論