2023年青海省海西數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁
2023年青海省海西數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁
2023年青海省海西數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁
2023年青海省海西數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁
2023年青海省海西數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.與直線平行,且與直線交于軸上的同一點(diǎn)的直線方程是()A. B. C. D.2.已知函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示.則的圖象,可由函數(shù)的圖象怎樣變換而來(縱坐標(biāo)不變)()A.先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向左平移個(gè)單位B.先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位C.先把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,再向左平移個(gè)單位D.先把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,再向右平移個(gè)單位3.的值()A.小于0 B.大于0 C.等于0 D.不小于04.已知圓和兩點(diǎn),,.若圓上存在點(diǎn),使得,則的最小值為()A. B. C. D.5.中,已知,則角()A.90° B.105° C.120° D.135°6.如圖為A、B兩名運(yùn)動(dòng)員五次比賽成績(jī)的莖葉圖,則他們的平均成績(jī)和方差的關(guān)系是()A., B.,C., D.,7.下列函數(shù)中,既是偶函數(shù),又在上遞增的函數(shù)的個(gè)數(shù)是().①;②;③;④向右平移后得到的函數(shù).A. B. C. D.8.設(shè)的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.若,,則角()A. B. C. D.9.若點(diǎn)為圓C:的弦MN的中點(diǎn),則弦MN所在直線的方程為()A. B. C. D.10.已知正方體的個(gè)頂點(diǎn)中,有個(gè)為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個(gè)正三棱錐與正方體的全面積之比為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對(duì)的邊分別為,,,若,則角最大值為______.12.在邊長(zhǎng)為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.13.已知正三棱錐的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2,則該三棱錐的外接球的表面積_____.14.若是方程的解,其中,則______.15.在中,、、所對(duì)的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.16.已知不等式x2-x-a>0的解集為x|x>3或三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知點(diǎn)、、(),且.(1)求函數(shù)的解析式;(2)如果當(dāng)時(shí),兩個(gè)函數(shù)與的圖象有兩個(gè)交點(diǎn),求的取值范圍.18.在中,內(nèi)角所對(duì)的邊分別為.已知,.(I)求的值;(II)求的值.19.如圖是某神奇“黃金數(shù)學(xué)草”的生長(zhǎng)圖.第1階段生長(zhǎng)為豎直向上長(zhǎng)為1米的枝干,第2階段在枝頭生長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來的,且與舊枝成120°,……,依次生長(zhǎng),直到永遠(yuǎn).(1)求第3階段“黃金數(shù)學(xué)草”的高度;(2)求第13階段“黃金數(shù)學(xué)草”的高度;20.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點(diǎn).(1)求證:平面;(2)求三棱錐的體積.21.已知函數(shù),.(1)求函數(shù)的單調(diào)減區(qū)間;(2)若存在,使等式成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

直線交于軸上的點(diǎn)為,與直線平行得到斜率,根據(jù)點(diǎn)斜式得到答案.【詳解】與直線平行直線交于軸上的點(diǎn)為設(shè)直線方程為:代入交點(diǎn)得到即故答案選A【點(diǎn)睛】本題考查了直線的平行關(guān)系,直線與坐標(biāo)軸的交點(diǎn),屬于基礎(chǔ)題型.2、B【解析】

根據(jù)圖象可知,根據(jù)周期為知,過點(diǎn)求得,函數(shù)解析式,比較解析式,根據(jù)圖像變換規(guī)律即可求解.【詳解】由在一個(gè)周期內(nèi)的圖象可得,,解得,圖象過點(diǎn),代入解析式得,因?yàn)?,所以,故,因?yàn)?,將函?shù)圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼牡?,再向右平移個(gè)單位得的圖象,故選B.【點(diǎn)睛】本題主要考查了由部分圖像求解析式,圖象變換規(guī)律,屬于中檔題.3、A【解析】

確定各個(gè)角的范圍,由三角函數(shù)定義可確定正負(fù).【詳解】∵,∴,,,∴.故選:A.【點(diǎn)睛】本題考查各象限角三角函數(shù)的符號(hào),掌握三角函數(shù)定義是解題關(guān)鍵.4、D【解析】

因?yàn)?,所以點(diǎn)的軌跡為以為直徑的圓,故點(diǎn)是兩圓的交點(diǎn),根據(jù)圓與圓的位置關(guān)系,即可求出.【詳解】根據(jù)可知,點(diǎn)的軌跡為以為直徑的圓,故點(diǎn)是圓和圓的交點(diǎn),因此兩圓相切或相交,即,亦即.故的最小值為.故選:D.【點(diǎn)睛】本題主要考查圓與圓的位置關(guān)系的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.5、C【解析】

由誘導(dǎo)公式和兩角差的正弦公式化簡(jiǎn)已知不等式可求得關(guān)系,求出后即可求得.【詳解】,∴,是三角形內(nèi)角,,,則由得,∴,從而.故選:C.【點(diǎn)睛】本題考查兩角差的正弦公式和誘導(dǎo)公式,考查正弦函數(shù)性質(zhì).已知三角函數(shù)值只要確定了角的范圍就可求角.6、D【解析】

根據(jù)題中數(shù)據(jù),直接計(jì)算出平均值與方差,即可得出結(jié)果.【詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【點(diǎn)睛】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎(chǔ)題型.7、B【解析】

將①②③④中的函數(shù)解析式化簡(jiǎn),分析各函數(shù)的奇偶性及其在區(qū)間上的單調(diào)性,可得出結(jié)論.【詳解】對(duì)于①中的函數(shù),該函數(shù)為偶函數(shù),當(dāng)時(shí),,該函數(shù)在區(qū)間上不單調(diào);對(duì)于②中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞減;對(duì)于③中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞增;對(duì)于④,將函數(shù)向右平移后得到的函數(shù)為,該函數(shù)為奇函數(shù),且當(dāng)時(shí),,則函數(shù)在區(qū)間上不單調(diào).故選:B.【點(diǎn)睛】本題考查三角函數(shù)單調(diào)性與奇偶性的判斷,同時(shí)也考查了三角函數(shù)的相位變換,熟悉正弦、余弦和正切函數(shù)的基本性質(zhì)是判斷的關(guān)鍵,考查推理能力,屬于中等題.8、B【解析】

根據(jù)正弦定理,可得,進(jìn)而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點(diǎn)睛】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2).9、A【解析】

根據(jù)題意,先求出直線PC的斜率,根據(jù)MN與PC垂直求出MN的斜率,由點(diǎn)斜式,即可求出結(jié)果.【詳解】由題意知,圓心的坐標(biāo)為,則,由于MN與PC垂直,故MN的斜率,故弦MN所在的直線方程為,即.故選A【點(diǎn)睛】本題主要考查求弦所在直線方程,熟記直線的點(diǎn)斜式方程即可,屬于??碱}型.10、A【解析】所求的全面積之比為:,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【詳解】因?yàn)樗越亲畲笾禐椤军c(diǎn)睛】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題12、【解析】

由三角形ABC的邊長(zhǎng)為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計(jì)算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點(diǎn)睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.13、.【解析】

由題意推出球心O到四個(gè)頂點(diǎn)的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長(zhǎng)為,底面外接圓半徑為側(cè)棱長(zhǎng)為2,BE=1,在三角形ABE中,根據(jù)勾股定理得到:高AE得到球心O到四個(gè)頂點(diǎn)的距離相等,O點(diǎn)在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14、【解析】

把代入方程2cos(x+α)=1,化簡(jiǎn)根據(jù)α∈(0,2π),確定函數(shù)值的范圍,求出α即可.【詳解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案為【點(diǎn)睛】本題考查三角函數(shù)值的符號(hào),三角函數(shù)的定義域,考查邏輯思維能力,屬于基礎(chǔ)題.15、【解析】

利用誘導(dǎo)公式,二倍角公式,余弦定理化簡(jiǎn)即可得解.【詳解】.故答案為.【點(diǎn)睛】本題主要考查了誘導(dǎo)公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.16、6【解析】

由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點(diǎn)睛】本題主要考查一元二次不等式的解,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)向量坐標(biāo)以及向量的數(shù)量積公式求出,利用輔助角公式即可求的解析式;(2),求出的范圍,令,,則畫函數(shù)圖象,由兩個(gè)函數(shù)與的圖象有兩個(gè)交點(diǎn),建立不等關(guān)系即可求的值.【詳解】解:(1),,,,,則,即;(2)因?yàn)?,,令,,則畫函數(shù)圖象如下所示:,要使兩個(gè)函數(shù)與的圖象有兩個(gè)交點(diǎn),則,,解得解得.【點(diǎn)睛】本題主要考查三角函數(shù)的化簡(jiǎn)和求值,利用向量的數(shù)量積公式結(jié)合三角函數(shù)的輔助角公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.18、(Ⅰ)(Ⅱ)【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進(jìn)而得到,由轉(zhuǎn)化為,求出,進(jìn)而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A為鈍角,所以.于是,,故.考點(diǎn):正弦定理、余弦定理、解三角形【名師點(diǎn)睛】利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、(1)(2)【解析】

(1)根據(jù)示意圖,計(jì)算出第階段、第階段生長(zhǎng)的高度,即可求解出第階段“黃金數(shù)學(xué)草”的高度;(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學(xué)草”高度的生長(zhǎng)量之間的關(guān)系,構(gòu)造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學(xué)草”的高度的計(jì)算.【詳解】(1)因?yàn)榈谝浑A段:,所以第階段生長(zhǎng):,第階段的生長(zhǎng):,所以第階段“黃金數(shù)學(xué)草”的高度為:;(2)設(shè)第個(gè)階段生長(zhǎng)的“黃金數(shù)學(xué)草”的高度為,則第個(gè)階段生長(zhǎng)的“黃金數(shù)學(xué)草”的高度為,第階段“黃金數(shù)學(xué)草”的高度為,所以,所以數(shù)列按奇偶性分別成公比為等比數(shù)列,所以.所以第階段“黃金數(shù)學(xué)草”的高度為:.【點(diǎn)睛】本題考查等比數(shù)列以及等比數(shù)列的前項(xiàng)和的實(shí)際應(yīng)用,難度較難.處理數(shù)列的實(shí)際背景問題,第一步要能從實(shí)際背景中分離出數(shù)列的模型,然后根據(jù)給定的條件處理對(duì)應(yīng)的數(shù)列計(jì)算問題,這對(duì)分析問題的能力要求很高.20、(1)證明見解析(2)【解析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點(diǎn),連接,則∵是的中點(diǎn),∴;∵是的中點(diǎn),∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴21、(1),.(2)【解析】

(1)利用降次公式和輔助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論