山東省德州市武城縣第二中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
山東省德州市武城縣第二中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
山東省德州市武城縣第二中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
山東省德州市武城縣第二中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
山東省德州市武城縣第二中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,角所對(duì)的邊分別為.若,,,則等于()A. B. C. D.2.若且,則下列不等式成立的是()A. B. C. D.3.若關(guān)于x,y的方程組無(wú)解,則()A. B. C.2 D.4.若變量滿足約束條件則的最大值為()A.4 B.3 C.2 D.15.正四棱柱的高為3cm,體對(duì)角線長(zhǎng)為cm,則正四棱柱的側(cè)面積為()A.10 B.24 C.36 D.406.記Sn為等差數(shù)列{an}的前A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-107.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.1 B.4C.2 D.8.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等9.下列說(shuō)法正確的是()A.函數(shù)的最小值為 B.函數(shù)的最小值為C.函數(shù)的最小值為 D.函數(shù)的最小值為10.在中,,,則()A.或 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則的最大值為_______.12.若x、y滿足約束條件,則的最大值為________.13.已知等差數(shù)列的前項(xiàng)和為,若,則=_______14.已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為__________.15.已知,若數(shù)列滿足,,則等于________16.已知不等式x2-x-a>0的解集為x|x>3或三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.某城市理論預(yù)測(cè)2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬(wàn))5781119(1)請(qǐng)?jiān)谟颐娴淖鴺?biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計(jì)2025年該城市人口總數(shù).(參考公式:,)18.等差數(shù)列的各項(xiàng)均為正數(shù),,的前項(xiàng)和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項(xiàng)和.19.已知,.(1)求及的值;(2)求的值.20.已知數(shù)列的前項(xiàng)和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.21.在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用正弦定理可求.【詳解】由正弦定理得.故選B.【點(diǎn)睛】本題考查正弦定理的應(yīng)用,屬于容易題.2、D【解析】

利用不等式的性質(zhì)對(duì)四個(gè)選項(xiàng)逐一判斷.【詳解】選項(xiàng)A:,符合,但不等式不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)B:當(dāng)符合已知條件,但零沒(méi)有倒數(shù),故不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)C:當(dāng)時(shí),不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)D:因?yàn)椋愿鶕?jù)不等式的性質(zhì),由能推出,故本選項(xiàng)是正確的,因此本題選D.【點(diǎn)睛】本題考查了不等式的性質(zhì),結(jié)合不等式的性質(zhì),舉特例是解決這類問(wèn)題的常見方法.3、A【解析】

由題可知直線與平行,再根據(jù)平行公式求解即可.【詳解】由題,直線與平行,故.故選:A【點(diǎn)睛】本題主要考查了二元一次方程組與直線間的位置關(guān)系,屬于基礎(chǔ)題.4、B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】作出約束條件,所對(duì)應(yīng)的可行域(如圖陰影部分)變形目標(biāo)函數(shù)可得,平移直線可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最小,代值計(jì)算可得取最大值故選B.【點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、B【解析】

設(shè)正四棱柱,設(shè)底面邊長(zhǎng)為,由正四棱柱體對(duì)角線的平方等于從同一頂點(diǎn)出發(fā)的三條棱的平方和,可得關(guān)于的方程.【詳解】如圖,正四棱柱,設(shè)底面邊長(zhǎng)為,則,解得:,所以正四棱柱的側(cè)面積.【點(diǎn)睛】本題考查正棱柱的概念,即底面為正方形且側(cè)棱垂直于底面的幾何體,考查幾何體的側(cè)面積計(jì)算.6、A【解析】

等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式.本題還可用排除,對(duì)B,a5=5,S4=4(-7+2)【詳解】由題知,S4=4a1+【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,滲透方程思想與數(shù)學(xué)計(jì)算等素養(yǎng).利用等差數(shù)列通項(xiàng)公式與前n項(xiàng)公式即可列出關(guān)于首項(xiàng)與公差的方程,解出首項(xiàng)與公差,在適當(dāng)計(jì)算即可做了判斷.7、C【解析】試題分析:由題意得,根據(jù)等比數(shù)列的性質(zhì)可知,又因?yàn)?,故選C.考點(diǎn):等比數(shù)列的性質(zhì).8、D【解析】

根據(jù)分層抽樣是等可能的選出正確答案.【詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【點(diǎn)睛】本小題主要考查隨機(jī)抽樣的公平性,考查分層抽樣的知識(shí),屬于基礎(chǔ)題.9、C【解析】

A.時(shí)無(wú)最小值;

B.令,由,可得,即,令,利用單調(diào)性研究其最值;

C.令,令,利用單調(diào)性研究其最值;

D.當(dāng)時(shí),,無(wú)最小值.【詳解】解:A.時(shí)無(wú)最小值,故A錯(cuò)誤;

B.令,由,可得,即,令,則其在上單調(diào)遞減,故,故B錯(cuò)誤;C.令,令,則其在上單調(diào)遞減,上單調(diào)遞增,故,故C正確;

D.當(dāng)時(shí),,無(wú)最小值,故D不正確.

故選:C.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.10、C【解析】

由正弦定理計(jì)算即可?!驹斀狻坑深}根據(jù)正弦定理可得即,解得,所以為或,又因?yàn)?,所以為故選C.【點(diǎn)睛】本題考查正弦定理,屬于簡(jiǎn)單題。二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

計(jì)算出,利用輔助角公式進(jìn)行化簡(jiǎn),并求出的最大值,可得出的最大值.【詳解】,,,所以,,當(dāng)且僅當(dāng),即當(dāng),等號(hào)成立,因此,的最大值為,故答案為.【點(diǎn)睛】本題考查平面向量模的最值的計(jì)算,涉及平面向量數(shù)量積的坐標(biāo)運(yùn)算以及三角恒等變換思想的應(yīng)用,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.12、18【解析】

先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標(biāo)函數(shù)所在直線過(guò)點(diǎn)時(shí),取最大值,即,故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,重點(diǎn)考查了作圖能力,屬基礎(chǔ)題.13、【解析】

利用等差數(shù)列前項(xiàng)和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【詳解】等差數(shù)列的前項(xiàng)和為,因?yàn)?,所以;又,所以.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和公式和等差數(shù)列的性質(zhì)的應(yīng)用,熟練掌握和若,則是解題的關(guān)鍵.14、【解析】

分析:先根據(jù)三角形面積公式求出母線長(zhǎng),再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側(cè)面積公式求結(jié)果.詳解:因?yàn)槟妇€,所成角的余弦值為,所以母線,所成角的正弦值為,因?yàn)榈拿娣e為,設(shè)母線長(zhǎng)為所以,因?yàn)榕c圓錐底面所成角為45°,所以底面半徑為因此圓錐的側(cè)面積為15、【解析】

根據(jù)首項(xiàng)、遞推公式,結(jié)合函數(shù)的解析式,求出的值,可以發(fā)現(xiàn)數(shù)列是周期數(shù)列,求出周期,利用數(shù)列的周期性可以求出的值.【詳解】,所以數(shù)列是以5為周期的數(shù)列,因?yàn)?0能被5整除,所以.【點(diǎn)睛】本題考查了數(shù)列的周期性,考查了數(shù)學(xué)運(yùn)算能力.16、6【解析】

由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點(diǎn)睛】本題主要考查一元二次不等式的解,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬(wàn)人【解析】

(1)由表中數(shù)據(jù)描點(diǎn)即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【詳解】(1)畫出散點(diǎn)圖如圖所示.(2),,,,,,則線性回歸方程.(3)時(shí),(十萬(wàn))(萬(wàn)).答:估計(jì)2025年該城市人口總數(shù)為196萬(wàn)人【點(diǎn)睛】本題主要考查了繪制散點(diǎn)圖,求回歸直線方程以及根據(jù)回歸方程進(jìn)行數(shù)據(jù)估計(jì),屬于中檔題.18、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,由列出關(guān)于的方程組,解出的值,從而得到與的表達(dá)式.(2)根據(jù)數(shù)列的特點(diǎn),可用錯(cuò)位相減法求它的前項(xiàng)和,由(1)的結(jié)果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉(zhuǎn)化為等比數(shù)列的求和問(wèn)題解決.試題解析:(1)設(shè)的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點(diǎn):1、等差數(shù)列和等比數(shù)列;2、錯(cuò)位相減法求特?cái)?shù)列的前項(xiàng)和.19、(1),;(2).【解析】

(1)由已知,,利用,可得的值,再利用及二倍角公式,分別求得及的值;(2)利用倍角公式、誘導(dǎo)公式,可得原式的值為.【詳解】(1)因?yàn)椋?,所以?(2)原式【點(diǎn)睛】若三個(gè)中,只要知道其中一個(gè),則另外兩個(gè)都可求出,即知一求二.20、(1)見證明;(2)見證明【解析】

(1)由,得,兩式作差可得,利用等比數(shù)列的定義,即可作出證明;(2)由(1)可得,得到,利用裂項(xiàng)法求得數(shù)列的和,即可作出證明.【詳解】(1)證明:由,得,兩式作差可得:,即,即,又,得,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)可得,數(shù)列的通項(xiàng)公式為,又由,所以.所以.【點(diǎn)睛】本題主要考查了等比數(shù)列的定義,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論