![MemoryaugmentedNeuralMachineTranslation專業(yè)知識課件_第1頁](http://file4.renrendoc.com/view/75c32c3292757699827739f27ab20923/75c32c3292757699827739f27ab209231.gif)
![MemoryaugmentedNeuralMachineTranslation專業(yè)知識課件_第2頁](http://file4.renrendoc.com/view/75c32c3292757699827739f27ab20923/75c32c3292757699827739f27ab209232.gif)
![MemoryaugmentedNeuralMachineTranslation專業(yè)知識課件_第3頁](http://file4.renrendoc.com/view/75c32c3292757699827739f27ab20923/75c32c3292757699827739f27ab209233.gif)
![MemoryaugmentedNeuralMachineTranslation專業(yè)知識課件_第4頁](http://file4.renrendoc.com/view/75c32c3292757699827739f27ab20923/75c32c3292757699827739f27ab209234.gif)
![MemoryaugmentedNeuralMachineTranslation專業(yè)知識課件_第5頁](http://file4.renrendoc.com/view/75c32c3292757699827739f27ab20923/75c32c3292757699827739f27ab209235.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Memory-augmentedNeuralMachineTranslationShiyue
ZhangNLP
Group,
CSLT,
Tsinghua
UniversityCo-work
with
Yang
Feng,
Dong
Wang,
Andi
ZhangEMNLP’17
(Submitted)OutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workReferenceIntroductionStatistical
Machine
Translation
(SMT)Phrase-based
machine
translation
(Moses,
Koehn
et
al.
2023
)Phrase
table
+
language
modelAn
example:什么是成人高考|||成人高考簡介Phrase
table:什么是=>簡介,成人高考=>成人高考Language
model
guides
the
orderNeural
Machine
Translation
(NMT)Achieved
significant
success,
especially
when
dataset
is
big
enough,
NMT
performs
quite
better
than
SMT
IntroductionAn
interesting
insight:Let’s
say
we
have
a
zh-en
translation
task,
and
the
number
of
Chinese
words
in
training
set
is
150,000.
In
SMT,
the
vocabulary
size
is
150,000,
OOV
(out
of
vocabulary)
words
only
appear
in
test
set.
In
NMT,
since
“word
embedding”
is
trained
along
with
the
model,
typically,
the
vocabulary
size
has
to
be
set
to
~30,000.
The
remained
120,000
words
are
uniformly
labeled
as
one
word
“UNK”.
So,
OOV
problem
is
dramatically
aggravated
in
NMT.
But,
surprisingly,
NMT
is
better
than
SMT.
Why?NMT
is
very
good
at
reasoning!IntroductionOverfits
to
frequent
observations,
while
overlooks
special
cases.
NMT
gives
a
reasonable
translation,
but
the
meaning
drifts
away.
An
experiment:
after
decoding
training
set,
30,000
English
vocabulary
shrinks
to
26911.
IntroductionOur
aim:
To
address
rare
and
unknown
word
problemsOur
method:
augment
NMT
with
a
memory
component
which
memorizes
source-target
word
pairs.
It’s
like
equipping
a
translator
with
a
dictionary.
OutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workAttention-based
NMT
OutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workMemory-augmented
NMT
Memory-augmented
NMT
Memory-augmented
NMTOOV
treatmentMain
idea:
Represent
an
OOV
word
by
its
similar
word
in
vocabularyAn
example:Src:目前沒有治愈阿爾茲海默癥旳措施Word
mapping:
<阿爾茲海默癥–
alzheimer>UNKNot
UNK<感冒–
alzheimer>Res:
Currentlythereisnocureforalzheimer'sdiseaseNote
that
similar
words
can
either
be
defined
by
human
or
selected
based
on
word
vector
similarity.
OutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workExperiments
(zh-en)Data:IWSLT:
44K
sentence
pairs
in
training
set,
~13,000
zh
words,
~9,500
en
words.NIST:
1M
sentence
pairs
in
training
set,
~190,000
zh
words,
~100,000
en
words.
Systems:SMT:
MosesNMTNMT-L
(Arthur,P.
et
al.
2023)NMT-PL
(Minh-ThangLuong
et
al.
2023)
M-NMTEvaluation
metrics:BLEU:
the
average
of
1-4
grams
bleu
multiplied
by
a
brevity
penaltyTranslation
baselineOOV
baselineExperiments
(zh-en)Two
observations:M-NMT
performs
bestM-NMT
brings
more
improvement
on
IWSLT
corpusTwo
conclusions:M-NMT
is
effectiveM-NMT
is
robustExperiments
(zh-en)M-NMT
recalls
more
OOV
words.Experiments
(zh-en)Experiments
(zh-uy)Data:
180k
sentence
pairs,
~170,000
Uyghur
words,
~130,000
Chinese
wordsPerformance:SystemsSMTNMTM-NMT1-gramBLEU54.557.758.82-gramBLEU34.639.840.83-gramBLEU26.631.932.44-gramBLEU22.127.027.1Brevitypenalty1.0000.9390.968BLEU32.4435.2436.88SystemsRecalled
words
in
testSMT3680/6666NMT3509/6666M-NMT3560/6666*6666
is
the
number
of
words
in
referenceOutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workConclusionsM-NMT
alleviates
rare
word
and
under-translation
problems
in
NMT.M-NMT
provides
a
way
to
address
OOV
problem.So
far,
M-NMT
brings
at
least
1.6
BLEU
improvement
on
different
datasets.
OutlineIntroductionAttention-based
NMTMemory-augmented
NMTExperimentsConclusionsFuture
workFuture
workBetter
OOV
treatment?
No
need
to
do
similar
word
replacementImplement
to
the
whole
datasetPhrase-based
memory?ReferenceKoehn,Philipp,Hoang,Hieu,Alexandra,&CallisonBurch,etal.(2023).Moses:opensourcetoolkitforstatisticalmachinetranslation.
inProceedingsoftheAssociationforComputationalLinguistics(ACL’07,9(1),177--180.Bahdanau,D.,Cho,K.,&Bengio,Y.(2023).Neuralmachinetranslationbyjointlylearningtoalignandtranslate.
ComputerScience.Arthur,P.,Neubig,G.,&Nakamura,S.(2023).Incorporating
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Module 10 Unit 2 You shouldn't be late(說課稿)-2024-2025學(xué)年外研版(一起)英語五年級上冊001
- 16 滑輪 說課稿-2023-2024學(xué)年科學(xué)六年級上冊青島版001
- 3 珍貴的淡水資源(說課稿)-2023-2024學(xué)年四年級科學(xué)下冊大象版
- 3 我不拖拉 第2課時(shí)(說課稿)-2023-2024學(xué)年道德與法治一年級下冊統(tǒng)編版
- 2023二年級數(shù)學(xué)上冊 二 角的初步認(rèn)識 銳角和鈍角說課稿 西師大版
- 19《夜宿山寺》說課稿-2024-2025學(xué)年二年級上冊語文統(tǒng)編版
- 2023八年級道德與法治上冊 第四單元 維護(hù)國家利益 第八課 國家利益至上 第1框 國家好 大家才會(huì)好說課稿 新人教版
- 2024年八年級道德與法治下冊 第三單元 人民當(dāng)家作主 第五課 我國基本制度 第2框 根本政治制度說課稿 新人教版
- 2024年秋九年級歷史上冊 第一單元 古代亞非文明 第3課 古代印度說課稿2 新人教版001
- 2025北京建筑材料購貨合同
- 2025年公務(wù)員考試申論試題與參考答案
- 2025年高考作文專練(25道真題+審題立意+范文)- 2025年高考語文作文備考總復(fù)習(xí)
- 中國高血壓防治指南(2024年修訂版)要點(diǎn)解讀
- 二十屆三中全會(huì)精神應(yīng)知應(yīng)會(huì)知識測試30題(附答案)
- 小學(xué)三年級下冊奧數(shù)題100道附答案
- 《烏有先生歷險(xiǎn)記》原文及翻譯
- 人員測評方案
- 小升初卷(試題)-2023-2024學(xué)年六年級下冊數(shù)學(xué)人教版
- GB/T 40565.1-2024液壓傳動(dòng)連接快換接頭第1部分:通用型
- 《教科版》二年級科學(xué)下冊全冊課件(完整版)
評論
0/150
提交評論