版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式5+2x<1的解集在數軸上表示正確的是().A. B. C. D.2.在中,,,下列結論中,正確的是()A. B.C. D.3.有兩組數據,A組數據為2、3、4、5、6;B組數據為1、7、3、0、9,這兩組數據的()A.中位數相等B.平均數不同C.A組數據方差更大D.B組數據方差更大4.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是()A. B. C. D.5.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.86.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.27.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.8.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點F,FE∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.249.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m10.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.311.下列運算正確的是()A.a6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=112.如圖,在⊙O中,點P是弦AB的中點,CD是過點P的直徑,則下列結論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個數是()A.4 B.1 C.2 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.14.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.15.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規(guī)律計算:__________.16.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____17.如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點D,滿足AB2=AD?AC,請在如圖所示的網格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.18.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;(2)參考(1)中構造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.20.(6分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.21.(6分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.22.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調查共抽取了多少名學生?求測試結果為C等級的學生數,并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.23.(8分)小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.24.(10分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.25.(10分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.26.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).27.(12分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
先解不等式得到x<-1,根據數軸表示數的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數化為1得x<-1.故選C.【點睛】本題考查了在數軸上表示不等式的解集:先求出不等式組的解集,然后根據數軸表示數的方法把對應的未知數的取值范圍通過畫區(qū)間的方法表示出來,等號時用實心,不等時用空心.2、C【解析】
直接利用銳角三角函數關系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【點睛】此題主要考查了銳角三角函數關系,熟練掌握銳角三角函數關系是解題關鍵.3、D【解析】
分別求出兩組數據的中位數、平均數、方差,比較即可得出答案.【詳解】A組數據的中位數是:4,平均數是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數據的中位數是:3,平均數是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數據的中位數不相等,平均數相等,B組方差更大.故選D.【點睛】本題考查了中位數、平均數、方差的計算,熟練掌握中位數、平均數、方差的計算方法是解答本題的關鍵.4、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數圖象.5、D【解析】分析:根據二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數是解題關鍵,比較簡單,是常考題型.6、C【解析】
連接OB,根據切線的性質與三角函數得到∠POB=60°,OB=OD=2,再根據等腰三角形的性質與三角函數得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點睛】本題主要考查切線的性質與銳角的三角函數,解此題的關鍵在于利用切線的性質得到相關線段與角度的值,再根據圓和等腰三角形的性質求解即可.7、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.8、D【解析】分析:首先證明四邊形ABEF為菱形,根據勾股定理求出對角線AE的長度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點睛:本題主要考查的是菱形的性質以及判定定理,屬于中等難度的題型.解決本題的關鍵就是根據題意得出四邊形為菱形.9、D【解析】
根據三角形的中位線定理即可得到結果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.10、D【解析】
由根與系數的關系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數的關系,解題的關鍵是根據根與系數的關系得出x1+x2=5,x1?x2=2.本題屬于基礎題,難度不大,解決該題型題目時,根據根與系數的關系得出兩根之和與兩根之積是關鍵.11、B【解析】
A、根據同底數冪的除法法則計算;
B、根據同底數冪的乘法法則計算;
C、根據積的乘方法則進行計算;
D、根據合并同類項法則進行計算.【詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【點睛】考查同底數冪的除法,合并同類項,同底數冪的乘法,積的乘方,熟記它們的運算法則是解題的關鍵.12、D【解析】
根據垂徑定理,圓周角的性質定理即可作出判斷.【詳解】∵P是弦AB的中點,CD是過點P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點,因而④不一定正確.故正確的是:①②③.故選:D.【點睛】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對的兩段?。煌瑘A或等圓中,圓周角等于它所對的弧上的圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
連接,根據勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.14、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.15、【解析】
結合圖形發(fā)現計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.16、【解析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質、勾股定理、直角三角形斜邊中線的性質、銳角三角函數等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.17、5見解析.【解析】
(1)由勾股定理即可求解;(2)尋找格點M和N,構建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點即為所求D點.【詳解】(1)AC=;(2)如圖,連接格點M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點即為所求D點.【點睛】本題考查了平面直角坐標系中定點的問題,理解第2問中構造全等三角形從而確定D點的思路.18、【解析】
根據周長表達出矩形的另一邊,再根據矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點睛】本題考查了一元二次方程與實際問題,解題的關鍵是找出等量關系.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明書見解析.【解析】
(1)以點N為圓心,以MQ長度為半徑畫弧,以點M為圓心,以NQ長度為半徑畫弧,兩弧交于一點F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓?。灰訫為圓心,以NQ為半徑畫圓?。粌蓤A弧的交點即為所求.(2)如圖,延長DA至E,使得AE=CB,連結CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點:1.尺規(guī)作圖;2.全等三角形的判定和性質.20、(1)見解析;(2)1【解析】
(1)根據ASA推出:△AEO≌△CFO;根據全等得出OE=OF,推出四邊形是平行四邊形,再根據EF⊥AC即可推出四邊形是菱形;(2)根據線段垂直平分線性質得出AF=CF,設AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質,平行四邊形的判定,菱形的判定,全等三角形的性質和判定,平行線的性質等知識點的綜合運用,用了方程思想.21、見解析【解析】
(1)由菱形的性質得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質,解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質.22、(1)50;(2)16;(3)56(4)見解析【解析】
(1)用A等級的頻數除以它所占的百分比即可得到樣本容量;
(2)用總人數分別減去A、B、D等級的人數得到C等級的人數,然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數;
(4)畫樹狀圖展示12種等可能的結果數,再找出抽取的兩人恰好都是男生的結果數,然后根據概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:
共有12種等可能的結果數,其中抽取的兩人恰好都是男生的結果數為2,
所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.23、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】
(1)根據題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設小麗離距離圖書館500m時所用的時間為x分,根據題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數圖像獲取信息,以及一元一次方程的應用,由函數圖像正確獲取信息是解答本題的關鍵.24、(1)y=﹣x2+2x+1.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據點C的坐標利用平行四邊形的性質可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數法可求出直線BC的解析式,根據點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數表達式;②利用二次函數的性質找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標為(0,1),點P的坐標為(2,1),∴點M的坐標為(1,6);當t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標為(t,﹣t2+2t+1),∴點F的坐標為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當t=時,S取最大值,最大值為.∵點B的坐標為(1,0),點C的坐標為(0,1),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標為(,).【點睛】本題考查了待定系數法求一次(二次)函數解析式、平行四邊形的判定與性質、三角形的面積、一次(二次)函數圖象上點的坐標特征以及二次函數的性質,解題的關鍵是:(1)由點的坐標,利用待定系數法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關于t的函數表達式;②利用二次函數的性質結合面積法求出P點到直線BC的距離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人股權并購及整合實施合同4篇
- 二零二五年度個人消費貸款擔保協議書4篇
- 二零二五年度門窗行業(yè)供應鏈管理服務合同8篇
- 2025年度個人二手房買賣合同交易稅費減免優(yōu)惠政策4篇
- 2025年房地產教育咨詢服務代理合同2篇
- 2025年度個人股權投資協議(風險投資)4篇
- 地鐵主體結構施工方案
- 市場研究專題報告十一 鈣通道阻滯劑市場研究專題報告202410
- 二零二五年度模具生產車間環(huán)保治理承包協議4篇
- 巴中水下施工方案
- 人教版(2025新版)七年級下冊英語:寒假課內預習重點知識默寫練習
- 藝術品捐贈協議
- 2024年食品行業(yè)員工勞動合同標準文本
- 網絡安全系統(tǒng)運維方案
- 2024年標準溝渠回填工程承包協議版B版
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- 高職組全國職業(yè)院校技能大賽(嬰幼兒照護賽項)備賽試題庫(含答案)
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- NB-T 47013.15-2021 承壓設備無損檢測 第15部分:相控陣超聲檢測
- 藥物外滲處理及預防【病房護士安全警示教育培訓課件】--ppt課件
- 紙箱檢驗標準新
評論
0/150
提交評論