




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個(gè)單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:12.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、E、F,得△DEF,則下列說法正確的個(gè)數(shù)是()①△ABC與△DEF是位似圖形
②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2
④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.43.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile4.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.5.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.的值是()A.1 B.﹣1 C.3 D.﹣37.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()A. B. C. D.8.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點(diǎn)D是CB延長線上的一點(diǎn),且BD=BA,則tan∠DAC的值為()A. B.2 C. D.39.如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.310.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.12.如圖,已知O為△ABC內(nèi)一點(diǎn),點(diǎn)D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).13.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.14.甲乙兩種水稻試驗(yàn)品中連續(xù)5年的平均單位面積產(chǎn)量如下(單位:噸/公頃)品種
第1年
第2年
第3年
第4年
第5年
品種
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
經(jīng)計(jì)算,,試根據(jù)這組數(shù)據(jù)估計(jì)_____中水稻品種的產(chǎn)量比較穩(wěn)定.15.圖,A,B是反比例函數(shù)y=圖象上的兩點(diǎn),過點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D.若D為OB的中點(diǎn),△AOD的面積為3,則k的值為________.16.二次函數(shù)y=(a-1)x2-x+a2-1
的圖象經(jīng)過原點(diǎn),則a的值為______.三、解答題(共8題,共72分)17.(8分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計(jì)用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計(jì)):請你設(shè)計(jì)一個(gè)測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計(jì)算過程:③給出的方案不能用到圖②的方法.18.(8分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點(diǎn)D,E是BD的中點(diǎn),聯(lián)結(jié)AE并延長,交邊BC于點(diǎn)F.(1)求∠EAD的余切值;(2)求的值.19.(8分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.20.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動,分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.21.(8分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個(gè)實(shí)數(shù)根;若原方程的兩根,滿足,求的值.22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線C1經(jīng)過點(diǎn)A(﹣4,0)、B(﹣1,0),其頂點(diǎn)為.(1)求拋物線C1的表達(dá)式;(2)將拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達(dá)式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點(diǎn)E、F(E在F左側(cè)),頂點(diǎn)為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點(diǎn)E的坐標(biāo).23.(12分)小新家、小華家和書店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時(shí)各自從家出發(fā)沿東風(fēng)大街勻速步行到書店買書,已知小新到達(dá)書店用了20分鐘,小華的步行速度是40米/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時(shí)間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關(guān)系式.(3)直接寫出兩人離小華家的距離相等時(shí)x的值.24.從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點(diǎn)睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.2、C【解析】
根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進(jìn)而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項(xiàng)錯(cuò)誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點(diǎn)睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關(guān)鍵.3、B【解析】
如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.4、D【解析】
根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項(xiàng)進(jìn)行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項(xiàng)正確.故選:D.【點(diǎn)睛】本題主要考查函數(shù)模型及其應(yīng)用.5、B【解析】
由中位數(shù)的概念,即最中間一個(gè)或兩個(gè)數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進(jìn)入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個(gè)人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進(jìn)入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.6、B【解析】
直接利用立方根的定義化簡得出答案.【詳解】因?yàn)椋?1)3=-1,=﹣1.故選:B.【點(diǎn)睛】此題主要考查了立方根,正確把握立方根的定義是解題關(guān)鍵.,7、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線8、A【解析】
設(shè)AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長度,進(jìn)而得出BD、CD的長度,由公式求出tan∠DAC的值即可.【詳解】設(shè)AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.【點(diǎn)睛】本題主要考查特殊角的三角函數(shù)值.9、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.10、D【解析】
本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).【點(diǎn)睛】本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過動手能力是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】
兩個(gè)單項(xiàng)式合并成一個(gè)單項(xiàng)式,說明這兩個(gè)單項(xiàng)式為同類項(xiàng).【詳解】解:由同類項(xiàng)的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點(diǎn)睛】本題考查的知識點(diǎn)為:同類項(xiàng)中相同字母的指數(shù)是相同的.12、【解析】
根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點(diǎn)睛】本題考查的知識點(diǎn)是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.13、或或1【解析】
如圖所示:①當(dāng)AP=AE=1時(shí),∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當(dāng)PE=AE=1時(shí),∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當(dāng)PA=PE時(shí),底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.14、甲【解析】
根據(jù)方差公式分別求出兩種水稻的產(chǎn)量的方差,再進(jìn)行比較即可.【詳解】甲種水稻產(chǎn)量的方差是:,乙種水稻產(chǎn)量的方差是:,∴0.02<0.124.∴產(chǎn)量比較穩(wěn)定的小麥品種是甲.15、1.【解析】先設(shè)點(diǎn)D坐標(biāo)為(a,b),得出點(diǎn)B的坐標(biāo)為(2a,2b),A的坐標(biāo)為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點(diǎn)D坐標(biāo)為(a,b),∵點(diǎn)D為OB的中點(diǎn),∴點(diǎn)B的坐標(biāo)為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標(biāo)為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點(diǎn)睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運(yùn)用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.16、-1【解析】
將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1的圖象經(jīng)過原點(diǎn),∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,圖象過原點(diǎn),可得出x=2時(shí),y=2.三、解答題(共8題,共72分)17、(1)8m;(2)答案不唯一【解析】
(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計(jì)成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點(diǎn)D作DCAB于點(diǎn)C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點(diǎn)睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.18、(1)∠EAD的余切值為;(2)=.【解析】
(1)在Rt△ADB中,根據(jù)AB=13,cos∠BAC=,求出AD的長,由勾股定理求出BD的長,進(jìn)而可求出DE的長,然后根據(jù)余切的定義求∠EAD的余切即可;(2)過D作DG∥AF交BC于G,由平行線分線段成比例定理可得CD:AD=CG:FG=3:5,從而可設(shè)CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【詳解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中點(diǎn),∴ED=6,∴∠EAD的余切==;(2)過D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,設(shè)CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==.【點(diǎn)睛】本題考查了勾股定理,銳角三角函數(shù)的定義,平行線分線段成比例定理.解(1)的關(guān)鍵是熟練掌握銳角三角函數(shù)的概念,解(2)的關(guān)鍵是熟練掌握平行線分線段成比例定理.19、(1)證明見解析;(2)【解析】試題分析:(1)過點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;
(2)連接OF,依據(jù)垂徑定理可知BE=EF=1,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.試題解析:(1)證明:過點(diǎn)O作OG⊥DC,垂足為G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切線.
(2)如圖所示:連接OF.
∵OA⊥BC,
∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.
∴tan∠ABC=.【點(diǎn)睛】本題主要考查的是切線的判定、垂徑定理、勾股定理的應(yīng)用、銳角三角函數(shù)的定義,掌握本題的輔助線的作法是解題的關(guān)鍵.20、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點(diǎn)A(3,0),點(diǎn)C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點(diǎn)C(0,4),∴,解得.∴直線AC的解析式為.∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,∴M點(diǎn)的坐標(biāo)為(m,).∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,∴點(diǎn)P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.21、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個(gè)實(shí)數(shù)根;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=5、x1x2=6-p2-p,結(jié)合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個(gè)實(shí)數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點(diǎn)睛:本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥1時(shí),方程有兩個(gè)實(shí)數(shù)根”;(2)根據(jù)根與系數(shù)的關(guān)系結(jié)合x12+x22-x1x2=3p2+1,求出p值.22、(1)y;(2);(3)E(,0).【解析】
(1)根據(jù)拋物線C1的頂點(diǎn)坐標(biāo)可設(shè)頂點(diǎn)式將點(diǎn)B坐標(biāo)代入求解即可;(2)由拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點(diǎn)坐標(biāo),可設(shè)拋物線C2的頂點(diǎn)式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達(dá)式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對應(yīng)角分別相等的兩個(gè)三角形相似可證△AGK∽△GFK,由其對應(yīng)線段成比例的性質(zhì)可知AK長,結(jié)合A、B點(diǎn)坐標(biāo)可知BK、BE、OE長,可得點(diǎn)E坐標(biāo).【詳解】解:(1)∵拋物線C1的頂點(diǎn)為,∴可設(shè)拋物線C1的表達(dá)式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達(dá)式為y,即y.(2)設(shè)拋物線C2的頂點(diǎn)坐標(biāo)為∵拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,即點(diǎn)與點(diǎn)關(guān)于點(diǎn)B(﹣1,0)對稱∴拋物線C2的頂點(diǎn)坐標(biāo)為()可設(shè)拋物線C2的表達(dá)式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達(dá)式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 麗江古城客棧出租合同范例
- 不銹鋼瓶采購合同標(biāo)準(zhǔn)文本
- 公司擔(dān)保借款合同標(biāo)準(zhǔn)文本
- 新學(xué)期目標(biāo)規(guī)劃簡短6篇
- 企業(yè)設(shè)備維修合同標(biāo)準(zhǔn)文本
- 肝功能衰竭的健康宣教
- 公司董事會會議通知【2篇】
- 公司購買紙張合同標(biāo)準(zhǔn)文本
- 公司與醫(yī)院合同標(biāo)準(zhǔn)文本
- 打造音樂活動品牌的突破性戰(zhàn)略計(jì)劃
- 校長在中考復(fù)習(xí)備考研討會上講話:聚焦中考命題核心!靶向突破薄弱環(huán)節(jié)
- 健康管理師的心理健康指導(dǎo)試題及答案
- 邯鄲2025年河北邯鄲市春季博碩人才引進(jìn)1438人筆試歷年參考題庫附帶答案詳解
- 3.2《做自尊的人》課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級下冊
- T-CALI 1101-2024 家用太陽能光伏照明產(chǎn)品-性能要求
- 2025年部編版道德與法治小學(xué)三年級下冊全冊教案(含教學(xué)計(jì)劃)
- 行政復(fù)議法-形考作業(yè)1-國開(ZJ)-參考資料
- 數(shù)電課程設(shè)計(jì)報(bào)告--- 音樂彩燈控制器
- 注塑成型試題-及答案
- 科室急救備用藥品領(lǐng)用補(bǔ)充工作流程
- 白內(nèi)障手術(shù)知情同意書
評論
0/150
提交評論