版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小紅上學(xué)要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學(xué)時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.2.如圖,數(shù)軸上有M、N、P、Q四個點,其中點P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點可能是()A.M B.N C.P D.Q3.我國的釣魚島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1074.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.55.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.6.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米7.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現(xiàn)需降價處理,為占有市場份額,且經(jīng)市場調(diào)查:每降價元,每星期可多賣出件.現(xiàn)在要使利潤為元,每件商品應(yīng)降價()元.A.3 B.2.5 C.2 D.58.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或9.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數(shù)不可能是()A.16 B.17 C.18 D.1910.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.11.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°12.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在梯形中,,,點、分別是邊、的中點.設(shè),,那么向量用向量表示是________.14.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結(jié)OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.15.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.16.請寫出一個一次函數(shù)的解析式,滿足過點(1,0),且y隨x的增大而減小_____.17.小李和小林練習(xí)射箭,射完10箭后兩人的成績?nèi)鐖D所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計這兩人中的新手是_____.18.4是_____的算術(shù)平方根.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對條件進行分析后,甲得到結(jié)論①:“E是BC中點”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.20.(6分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.21.(6分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.22.(8分)如圖,在平面直角坐標系中,拋物線C1經(jīng)過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達式;(2)將拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點E、F(E在F左側(cè)),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標.23.(8分)某校對六至九年級學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進行隨機抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少學(xué)生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有200名學(xué)生,如圖是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請估計全校六至九年級學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?24.(10分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結(jié)合以上信息,回答下列問題:求服裝項目的權(quán)數(shù)及普通話項目對應(yīng)扇形的圓心角大??;求李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);根據(jù)你所學(xué)的知識,幫助學(xué)校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.25.(10分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中所給信息解答下列問題:(1)本次共調(diào)查名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調(diào)查,數(shù)學(xué)課外實踐小組的學(xué)生對交通法規(guī)有了更多的認識,學(xué)校準備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.26.(12分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.27.(12分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.2、A【解析】解:∵點P所表示的數(shù)為a,點P在數(shù)軸的右邊,∴-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍,∴數(shù)-3a所對應(yīng)的點可能是M,故選A.點睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍.3、A【解析】4400000=4.4×1.故選A.點睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).4、B【解析】
由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.5、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì)及扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)及扇形面積的計算.6、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應(yīng)用.7、A【解析】
設(shè)售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現(xiàn)在可以賣出[300+20(60-x)]件,然后根據(jù)盈利為6120元即可列出方程解決問題.【詳解】解:設(shè)售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.
∴每件商品應(yīng)降價60-57=3元.
故選:A.【點睛】本題考查了一元二次方程的應(yīng)用.此題找到關(guān)鍵描述語,找到等量關(guān)系準確的列出方程是解決問題的關(guān)鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.8、A【解析】
根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關(guān)鍵.9、A【解析】
一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經(jīng)過兩個相鄰點,則少了一條邊;經(jīng)過一個頂點和一邊,邊數(shù)不變;經(jīng)過兩條鄰邊,邊數(shù)增加一條.10、B【解析】
先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.11、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.12、A【解析】
由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對稱性.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.14、6【解析】
根據(jù)題意可以分別設(shè)出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關(guān)系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設(shè)過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.15、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應(yīng)邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.16、y=﹣x+1【解析】
根據(jù)題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數(shù)y隨x的增大而減小,∴k<0,∵一次函數(shù)的解析式,過點(1,0),∴滿足條件的一個函數(shù)解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,寫出符合要求的函數(shù)解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.17、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.18、16.【解析】試題解析:∵42=16,∴4是16的算術(shù)平方根.考點:算術(shù)平方根.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學(xué)的結(jié)論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結(jié)論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學(xué)的結(jié)論都正確.20、(1)=x2+7+(2)見解析【解析】
(1)根據(jù)閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式即可;(2)原式分子變形后,利用不等式的性質(zhì)求出最小值即可.【詳解】(1)設(shè)﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當x=0時,取得最小值0,∴當x=0時,x2+7+最小值為1,即原式的最小值為1.21、(1);(2)【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結(jié)果,其中投放的兩袋垃圾同類的有4種結(jié)果,所以投放的兩袋垃圾同類的概率為=.【點睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)y;(2);(3)E(,0).【解析】
(1)根據(jù)拋物線C1的頂點坐標可設(shè)頂點式將點B坐標代入求解即可;(2)由拋物線C1繞點B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點坐標,可設(shè)拋物線C2的頂點式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對應(yīng)角分別相等的兩個三角形相似可證△AGK∽△GFK,由其對應(yīng)線段成比例的性質(zhì)可知AK長,結(jié)合A、B點坐標可知BK、BE、OE長,可得點E坐標.【詳解】解:(1)∵拋物線C1的頂點為,∴可設(shè)拋物線C1的表達式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達式為y,即y.(2)設(shè)拋物線C2的頂點坐標為∵拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,即點與點關(guān)于點B(﹣1,0)對稱∴拋物線C2的頂點坐標為()可設(shè)拋物線C2的表達式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【點睛】本題考查了二次函數(shù)與幾何的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),靈活的利用待定系數(shù)法求二次函數(shù)解析式是解前兩問的關(guān)鍵,熟練掌握相似三角形的判定與性質(zhì)是解(3)的關(guān)鍵.23、(1)50(2)36%(3)160【解析】
(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全校總?cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動的學(xué)生所占的百分比,繼而可估計出全校學(xué)生中最喜歡跳繩活動的人數(shù).【詳解】(1)該校對名學(xué)生進行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計全校學(xué)生中最喜歡跳繩活動的人數(shù)約為人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.24、(1)服裝項目的權(quán)數(shù)是10%,普通話項目對應(yīng)扇形的圓心角是72°;(2)眾數(shù)是85,中位數(shù)是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,理由見解析.【解析】
(1)根據(jù)扇形圖用1減去其它項目的權(quán)重可求得服裝項目的權(quán)重,用360度乘以普通話項目的權(quán)重即可求得普通話項目對應(yīng)扇形的圓心角大小;(2)根據(jù)統(tǒng)計表中的數(shù)據(jù)可以求得李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計圖和統(tǒng)計表中的數(shù)據(jù)可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權(quán)數(shù)是:1﹣20%﹣30%﹣40%=10%,普通話項目對應(yīng)扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數(shù)的眾數(shù)是85,中位數(shù)是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽.【點睛】本題考查了扇形統(tǒng)計圖、中位數(shù)、眾數(shù)、加權(quán)平均數(shù),明確題意,結(jié)合統(tǒng)計表和統(tǒng)計圖找出所求問題需要的條件,運用數(shù)形結(jié)合的思想進行解答是解題的關(guān)鍵.25、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學(xué)生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調(diào)查的總?cè)藬?shù),用C的人數(shù)除以調(diào)查的總?cè)藬?shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑監(jiān)理基礎(chǔ)施工協(xié)議
- 農(nóng)業(yè)創(chuàng)新園區(qū)停車場改造合同
- 鉆孔工程安全生產(chǎn)考核合同
- 環(huán)保工程木地板工程合同
- 醫(yī)院管理團隊聘用合同
- 租用合同樣本:消防設(shè)備
- 護理科研項目管理與實施
- 藥品采購績效評估體系
- 電子產(chǎn)品招投標市場現(xiàn)狀分析
- 陶瓷制品廠建設(shè)鋼結(jié)構(gòu)施工合同
- 鍋爐控制器modbus協(xié)議支持說明
- 粉末涂料有限公司危廢庫安全風(fēng)險分級管控清單
- 安全生產(chǎn)信息管理制度全
- 住宅物業(yè)危險源辨識評價表
- 世界主要國家洲別、名稱、首都、代碼、區(qū)號、時差匯總表
- 2023學(xué)年廣東省廣州市越秀區(qū)鐵一中學(xué)九年級(上)物理期末試題及答案解析
- 《報告文學(xué)研究》(07562)自考考試復(fù)習(xí)題庫(含答案)
- 安全操作規(guī)程
- 電源日常點檢記錄表
- 人教版小學(xué)三年級語文上冊期末測試卷.及答題卡2
- 鋼軌接頭位置及接頭聯(lián)結(jié)形式
評論
0/150
提交評論