2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年云南省玉溪市數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且,則的最大值為()A. B.C. D.2.某市要對兩千多名出租車司機(jī)的年齡進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名司機(jī),已知抽到的司機(jī)年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機(jī)的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機(jī)年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲3.命題:“,”的否定是()A., B.,C., D.,4.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.5.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.6.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.77.已知直線l:,則下列結(jié)論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過與直線l平行的直線方程是8.已知是函數(shù)的導(dǎo)函數(shù),則()A0 B.2C.4 D.69.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.10.拋物線y2=4x的焦點(diǎn)坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)11.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”12.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.81二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線上的動點(diǎn),,,則的最小值為________.14.已知直線與圓:交于、兩點(diǎn),則的面積為______.15.若滿足約束條件,則的最小值為________.16.若點(diǎn)到點(diǎn)的距離比它到定直線的距離小1,則點(diǎn)滿足的方程為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點(diǎn)分別為,.點(diǎn)滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.18.(12分)已知:(常數(shù));:代數(shù)式有意義(1)若,求使“”為真命題的實(shí)數(shù)的取值范圍;(2)若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍19.(12分)橢圓的左、右焦點(diǎn)分別為,短軸的一個端點(diǎn)到的距離為,且橢圓過點(diǎn)過且不與兩坐標(biāo)軸平行的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.(1)求橢圓的方程(2)當(dāng)直線的斜率為1時,求的面積;(3)若點(diǎn),求證:三點(diǎn)共線.20.(12分)已知圓C的圓心為,且圓C經(jīng)過點(diǎn)(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實(shí)數(shù)m的取值范圍21.(12分)已知圓與x軸交于A,B兩點(diǎn),P是該圓上任意一點(diǎn),AP,PB的延長線分別交直線于M,N兩點(diǎn).(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當(dāng)圓C面積最小時,求此時圓C的方程.22.(10分)求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程(1)焦點(diǎn)在x軸上,實(shí)軸長為4,實(shí)半軸長是虛半軸長的2倍;(2)焦點(diǎn)在y軸上,漸近線方程為,焦距長為

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】由基本不等式直接求解即可得到結(jié)果.【題目詳解】由基本不等式知;(當(dāng)且僅當(dāng)時取等號),的最大值為.故選:A.2、C【解題分析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【題目詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設(shè)中位數(shù)為,則有,解得(歲),故選C【題目點(diǎn)撥】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題3、D【解題分析】利用全稱量詞命題的否定可得出結(jié)論.【題目詳解】由全稱量詞命題的否定可知,命題“,”的否定是“,”.故選:D.4、A【解題分析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【題目詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題5、B【解題分析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計算求解.【題目詳解】解:由題得,,故選:B6、D【解題分析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【題目詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D7、D【解題分析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設(shè)要求直線的方程為,將代入即可.【題目詳解】根據(jù)題意,依次分析選項:對于A,直線l:,即,其斜率,則傾斜角是,A錯誤;對于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯誤;對于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯誤;對于D,設(shè)要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D8、D【解題分析】由導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)函數(shù),再計算導(dǎo)數(shù)值【題目詳解】由題意,,所以故選:D9、A【解題分析】由拋物線的方程直接寫出其準(zhǔn)線方程即可.【題目詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A10、D【解題分析】的焦點(diǎn)坐標(biāo)為,故選D.【考點(diǎn)】拋物線的性質(zhì)【名師點(diǎn)睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)是我們要重點(diǎn)掌握的內(nèi)容,一定要熟記掌握11、C【解題分析】結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【題目詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【題目點(diǎn)撥】本題考查了互斥事件和對立事件的定義的運(yùn)用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.12、B【解題分析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點(diǎn)睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.二、填空題:本題共4小題,每小題5分,共20分。13、6【解題分析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準(zhǔn)線的距離為,進(jìn)而數(shù)形結(jié)合求出最小值.【題目詳解】易知為拋物線的焦點(diǎn),設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:614、2【解題分析】用已知直線方程和圓方程聯(lián)立,可以求出交點(diǎn),再分析三角形的形狀,即可求出三角形的面積.【題目詳解】由圓C方程:可得:;即圓心C的坐標(biāo)為(0,-1),半徑r=2;聯(lián)立方程得交點(diǎn),如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.15、5【解題分析】作出可行域,作直線,平移該直線可得最優(yōu)解【題目詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當(dāng)直線過點(diǎn)時取得最小值5故答案為:516、【解題分析】根據(jù)拋物線的定義可得動點(diǎn)的軌跡方程【題目詳解】點(diǎn)到點(diǎn)的距離比它到直線的距離少1,所以點(diǎn)到點(diǎn)的距離與到直線的距離相等,所以其軌跡為拋物線,焦點(diǎn)為,準(zhǔn)線為,所以方程為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】(1)由及兩點(diǎn)間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【題目詳解】(1)設(shè),,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點(diǎn)的坐標(biāo)滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【題目點(diǎn)撥】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點(diǎn)坐標(biāo),利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.18、(1);(2).【解題分析】(1)若,分別求出,成立的等價條件,利用為真,求實(shí)數(shù)的取值范圍;(2)利用是的充分不必要條件,建立不等式關(guān)系即可求實(shí)數(shù)的取值范圍【題目詳解】:等價于:即;:代數(shù)式有意義等價于:,即,(1)時,即為,若“”為真命題,則,得:故時,使“”為真命題的實(shí)數(shù)的取值范圍是,,(2)記集合,,若是成立的充分不必要條件,則是的真子集,因此:,,故實(shí)數(shù)的取值范圍是19、(1);(2);(3)證明見解析.【解題分析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達(dá)定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因為橢圓過點(diǎn)所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點(diǎn)到直線的距離為.所以的面積為.【小問3詳解】解:設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得,設(shè),所以,由題得,,所以,所以,所以,又有公共點(diǎn),所以三點(diǎn)共線.20、(1)(2)【解題分析】(1)設(shè)圓C的一般方程為.由圓C的圓心和圓C經(jīng)過點(diǎn)求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問1詳解】解:設(shè)圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過點(diǎn),∴解得經(jīng)檢驗得圓C的一般方程為;【小問2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是21、(1)或;(2).【解題分析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進(jìn)行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點(diǎn),所以,圓心在x軸上,所以,因為,,所以有,當(dāng)P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當(dāng)P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設(shè)直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論