2023年北京市房山區(qū)房山中學數(shù)學高一下期末聯(lián)考試題含解析_第1頁
2023年北京市房山區(qū)房山中學數(shù)學高一下期末聯(lián)考試題含解析_第2頁
2023年北京市房山區(qū)房山中學數(shù)學高一下期末聯(lián)考試題含解析_第3頁
2023年北京市房山區(qū)房山中學數(shù)學高一下期末聯(lián)考試題含解析_第4頁
2023年北京市房山區(qū)房山中學數(shù)學高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊經過點(3,-4),則的值為()A. B. C. D.2.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.3.把十進制數(shù)化為二進制數(shù)為A. B.C. D.4.已知數(shù)列滿足,,則數(shù)列的前10項和為()A. B. C. D.5.若向量,,則()A. B. C. D.6.在中,內角,,的對邊分別為,,,且=.則A. B. C. D.7.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.8.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)9.在空間四邊形中,,,,分別是,的中點,,則異面直線與所成角的大小為()A. B. C. D.10.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內的人數(shù)是______12.圓上的點到直線4x+3y-12=0的距離的最小值是13.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.14.已知x、y滿足約束條件,則的最小值為________.15.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.16.在等差數(shù)列中,若,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=asin(x)(a>0)在同一半周期內的圖象過點O,P,Q,其中O為坐標原點,P為函數(shù)f(x)的最高點,Q為函數(shù)f(x)的圖象與x軸的正半軸的交點,△OPQ為等腰直角三角形.(1)求a的值;(2)將△OPQ繞原點O按逆時針方向旋轉角α(0<α),得到△OP′Q′,若點P′恰好落在曲線y(x>0)上(如圖所示),試判斷點Q′是否也落在曲線y(x>0),并說明理由.18.已知的頂點,邊上的中線所在直線方程為,的平分線所在直線方程為,求:(Ⅰ)頂點的坐標;(Ⅱ)直線的方程19.已知函數(shù)f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范圍20.已知非零數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)若關于的不等式有解,求整數(shù)的最小值;(3)在數(shù)列中,是否存在首項、第項、第項(),使得這三項依次構成等差數(shù)列?若存在,求出所有的;若不存在,請說明理由.21.銳角三角形的內角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

先求出的值,即得解.【詳解】由題得,,所以.故選A【點睛】本題主要考查三角函數(shù)的坐標定義,意在考查學生對該知識的理解掌握水平,屬于基礎題.2、B【解析】

依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因為,又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點睛】本題主要考查學生空間想象以及數(shù)學建模能力,能夠依據(jù)條件建立合適的模型是解題的關鍵.3、C【解析】選C.4、C【解析】

由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項和公式求解即可.【詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項和公式,.故選:C【點睛】本題主要考查等比數(shù)列的定義和等比數(shù)列前項和公式的應用,考查學生的計算能力,屬于基礎題.5、B【解析】

根據(jù)向量的坐標運算,先由,求得,再求的坐標.【詳解】因為,所以,所以.故選:B【點睛】本題主要考查了向量的坐標運算,還考查了運算求解的能力,屬于基礎題.6、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應用.7、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.8、C【解析】

由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點睛】本題主要考查復合函數(shù)的單調性,二次函數(shù)的性質,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.9、D【解析】

平移兩條異面直線到相交,根據(jù)余弦定理求解.【詳解】如圖所示:設的中點為,連接,所以,則是所成的角或其補角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【點睛】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.10、C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構建和的方程組求通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣12、【解析】

計算出圓心到直線的距離,減去半徑,求得圓上的點到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點睛】本小題主要考查圓上的點到直線距離最小值的求法,考查點到直線距離公式,屬于基礎題.13、【解析】如圖過點作,,則四邊形是一個內角為45°的平行四邊形且,中,,則對應可得四邊形是矩形且,是直角三角形,.所以14、-3【解析】

作出可行域,目標函數(shù)過點時,取得最小值.【詳解】作出可行域如圖表示:目標函數(shù),化為,當過點時,取得最大值,則取得最小值,由,解得,即,的最小值為.故答案為:【點睛】本題考查二元一次不等式組表示平面區(qū)域,以及線性目標函數(shù)的最值,屬于基礎題.15、【解析】

根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關系可確定的范圍.【詳解】直線可整理為:直線經過定點,又直線的斜率為的取值范圍為:本題正確結果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關鍵是能夠明確直線經過的定點,從而確定臨界狀態(tài)時的斜率.16、【解析】

利用等差中項的性質可求出的值.【詳解】由等差中項的性質可得,解得.故答案為:.【點睛】本題考查利用等差中項的性質求項的值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2)見解析.【解析】

(1)由已知利用周期公式可求最小正周期T=8,由題意可求Q坐標為(1,0).P坐標為(2,a),結合△OPQ為等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求點P′,Q′的坐標,由點P′在曲線y(x>0)上,利用倍角公式,誘導公式可求cos2,又結合0<α,可求sin2α的值,由于1cosα?1sinα=8sin2α=23,即可證明點Q′不落在曲線y(x>0)上.【詳解】(Ⅰ)因為函數(shù)f(x)=asin(x)(a>0)的最小正周期T8,所以函數(shù)f(x)的半周期為1,所以|OQ|=1.即有Q坐標為(1,0).又因為P為函數(shù)f(x)圖象的最高點,所以點P坐標為(2,a),又因為△OPQ為等腰直角三角形,所以a2.(Ⅱ)點Q′不落在曲線y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以點P′,Q′的坐標分別為(2cos(),2sin()),(1cosα,1sinα),因為點P′在曲線y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα?1sinα=8sin2α=823.所以點Q′不落在曲線y(x>0)上.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)設,可得中點坐標,代入直線可得;將點坐標代入直線得,可構造出方程組求得點坐標;(Ⅱ)設點關于的對稱點為,根據(jù)點關于直線對稱點的求解方法可求得,因為在直線上,根據(jù)兩點坐標可求得直線方程.【詳解】(Ⅰ)設,則中點坐標為:,即:又,解得:,(Ⅱ)設點關于的對稱點為則,解得:邊所在的直線方程為:,即:【點睛】本題考查直線方程、直線交點的求解;關鍵是能夠熟練應用中點坐標公式和點關于直線對稱點的求解方法,屬于??碱}型.19、(1);(2)[0,].【解析】

(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本試題組要是考查了三角函數(shù)的運用.20、(1)證明見解析;(2);(3)存在,或.【解析】

(1)由條件可得,即,再由等比數(shù)列的定義即可得證;

(2)由等比數(shù)列的通項公式求得,,再由數(shù)列的單調性的判斷,可得最小值,解不等式即可得到所求最小值;

(3)假設存在首項、第項、第項(),使得這三項依次構成等差數(shù)列,由等差數(shù)列的中項的性質和恒等式的性質,可得,的方程,解方程可得所求值.【詳解】解:(1)證明:由,

得,即,

所以數(shù)列是首項為2,公比為2的等比數(shù)列;

(2)由(1)可得,,則

故,

設,

則,

所以單調遞增,

則,于是,即,

故整數(shù)的最小值為;

(3)由上面得,,

設,

要使得成等差數(shù)列,即,

即,

得,

,

故為偶數(shù),為奇數(shù),

或.【點睛】本題考查等比數(shù)列的定義和通項公式的運用,考查不等式恒成立問題的解法,注意運用函數(shù)的單調性求得最值,考查存在性問題的解法,注意運用恒等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論