結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)課件_第1頁
結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)課件_第2頁
結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)課件_第3頁
結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)課件_第4頁
結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)課件_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

結(jié)構(gòu)優(yōu)化和魯棒性設(shè)計(jì)顧鐳博士徐有忠博士奇瑞汽車公司奇瑞乘用車工程研究院Background:Analysisvs.DesignNumericalOptimizationMultidisciplinaryDesignOptimization(MDO)SafetyOptimizationBackground:SafetyScopeandChallengesCAEChallengesandSolutionTechnologiesStructuralOptimizationCrashPulseOptimizationMDOApplicationsTopologyOptimizationShapeOptimizationRestraintSystemOptimizationFutureDirectionsOutlineAnalysisandDesignOptimizationMethodsOptimalityCriteriaMethods(indirectmethods)OptimalitycriteriaaretheconditionsafunctionmustsatisfyatitsminimumpointStudyofoptimalityconditionsarenecessaryregardlessofthemethodused.SearchMethods(directsearchmethods)

Math.Programming

Mostgeneral

RequireF,h,g,dF/dx,dh/dxdg/dxxk+1=xk+ak

Skx1x2OptimizationinComputationalMechanicsF,g,&hareimplicitfunctionsofx.

ExactevaluationrequirescompleteFEA.SensitivitiesofF,g&hmayrequiremoreeffortsthananalysisitself.Numbersofconstraintsgi&xmaybeverylarge.FinddesignvariableXthatwillMinimizeF(X)Subjecttogi(X)£0,hj(X)=0,Xl

X£

XuApproximateOptimizationAnalysis+GradientsApproximationOptimizationInnerLoopOptimizationAnalysisOuterLoopAnalysisApproximationOptimizationDOEOuterLoopInnerLoopMultidisciplinaryDesignOptimization

(MDO)isamethodologyforimprovingdesignofengineeringsystems,e.g.,automobile,aircraft,orspacecraft,inwhicheverythinginfluenceseverythingelse.-ByDr.J.Sobieski-NASALangleyWhatisMDOMDO(continued)EffectiveIntegrationofIndividualDisciplines/SubsystemstoCapturetheInteractionsNovelSolutionProcedurestoEnableSystemLevelSolutionsCharacteristics:Large-Scale,NeedsDecomposition,ComputationIntensive,MultipleSimulationsCFDStructuresControlsLoadsDeformationControlSurfaceDeflnsStressPressureMomentsDesignspacediscipline1Designspacediscipline2DesignVariablesPerformanceMultidisciplinaryOptimalDesignDiscipline1OptimumFeasible

Design

SpaceSuboptimalDesignConventionalTradesMDOSearchDiscipline2OptimumSafetyCAEChallenges/SolutionTechnologiesSimulationToolNotRobustorImmatureVerificationandValidationMethodsHighlyUndeterministicRobustDesignComputationIntensive(Structure)ResponseSurfaceMethodHighlyNonlinearorEvenDiscontinuous(RestraintSystem)GeneticAlgorithmManyConflictingRequirementsOptimizationManydesignVariablesHighPerformanceComputing(HPC)?(nosolutionyet)StructuralOptimization

(DOE/ResponseSurfaceApproach)ConventionalApproachSOARApproachTooexpensiveComputationaffordableSequentialParallel/HighPerformanceComputationLocaloptimalGlobaloptimalSensitivitybasedOptimalLatinHyperCube/SurrogatemodelsSingleDisciplineMultidisciplinaryReliabilityBasedRobustDesignAccuracy/Convergence?RobustnessAssessment&Design(MonteCarloetc.)STOPAddNewPointstoReconstructRSDefineOptimizationProblem:Objective,Constraints,DesignVariables(DV)SelectSamplingMethod:2/3levelDOE,Supersaturated,LatinHypercube

etc.ReduceDVNo.(basedoncomputerresources)ConstructResponseSurface(RS):NN,EMARS,Polynomial,StepwiseRegressionetc.NumericalOptimizationbasedonRSConfirmationRunsforOptimalDesignsYesNoOptimizationandRobustDesignStrategyUniformLatinHypercubeSampling(ParallelSimulations)SecondOrderResponseSurfaceSubsetSelectionGlobalOptimization/MixedVariableAlgorithm/SQPReliabilityBasedRobustOptimization

(Guetal,“MultidisciplinaryDesignOptimizationofaFullVehiclewithHighPerformanceComputing”,AIAA-2001-1273)

UniformLatinHypercubeSamplingUniformLatinhypercubeseeksdesignpointsthatuniformlyscatteredonthedomain.(Fangetal,UniformDesign:TheoryandApplication,2000)MeasurementsofuniformityL2discrepancy(Warnock,1972)CenteredL2discrepancy(Hickernell,1998)

UniformLatinHypercubeSamplingMin.num.ofsimulations=3num.ofdesignvariablesFactorialDesignLatinHypecubeUniformLatinHypecubeGoal:within45simulationsforeachcrashmode.SubsetRegressionSecondorderresponsesurfaceRegressionbysubsetselection(A.J.Miller,SubsetSelectioninRegression,ChapmanandHall,1990)E.g.HIC=359.4-2.83x1+76.3x2x10-34.84x9x9+0.3x3-3.87x4x10+2.7x4+0.2x5QualityoftheresponsesurfaceismeasuredbyResidualSumofSquares(RSS)Stepwiseregression(Efroymsonalgorithm)SequentialReplacementAlgorithmSequentialReplacementAlgorithm(SRA) Startingsubset:y=a0+a1x1+…+an

xnReplacementcandidates:x12,x22,…,xn2,x1x2,x1x3,…,x1xn,x2x3,…,xn-1xn Startingsubset:y=a0+a1x1+…+an

xn

RSS0

Iteration1:y=a0+a1x12+…+an

xn

RSS1

Iteration2:y=a0+a1x22+…+an

xn RSS2 …………Iterationm:y=a0+a1

xn-1xn+…+an

xn RSSm

LetRSSk

=Min{RSSi},thenStartingsubset:y=a0+a1

pk(x)+a2x2+…+an

xn

…………Application:FrontEndOptimization35mphFrontimpactintoaRigidWall40mphFrontOffsetImpactintoaDeformableBarrierApplication:VehicleFrontEndOptimizationSummaryofFrontEndOptimizationDesignVariables(10):GagesandMaterialsofRail,Shotgun,Subframe,Brace,Cross-member,Rocker,Sill,etc.TotalNumberofSimulations:72CPUofEachSimulation:70hrsonSGIOrigin2000(front)and100hrs(Offset)FEMmodels:C.O’Connor,M.El-BkallyandT.QuExampleofOptimizationandRobustnessAssessmentRisksof“Optimized”Design:ActiveConstraints

–uncertainty,variationleadstofaileddesignsOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignSensitive“peak”solutions–smallchangesininputsresultsinsignificantlossofperformanceEffectofUncertainty:PerformanceVariationSearchforreliablestructuraldesigns:feasiblewithrespecttodeterministicconstraintsmeetadesiredminimumlevelofReliabilitydonotexceedamaximumProbabilityofFailureHastheeffectofpullingdeterministicoptimizationsolutionsawayfromtheconstraintsInitialProbabilityofFailure,PfY1Robust,ReliableSolutionconstraintReliabilityBasedDesignoptimization:BenefitsOptimalSolutionReliability“Shift”andRobust“Shrink”SafetyFactor?Optimization?OrRobust?Focus:AddressingUncertainty,DesigningforQualityImplementation: SixSigmaBasedRobustDesignOptimization(iSIGHT)

PerformanceMeasureApproach(PMA)ReliabilityBasedDesignOptimizationSourcesofVariabilityMaterialrelatedMaterialpropertiesThicknessManufacturingrelatedFormingprocessesMachiningprocessesAssemblyprocessesTestconditionsEnvironmentsHumanFactorsActualvs.expecteduseModelingTechniquesNumericalalgorithmscontrolsConstitutivemodelsComputerhardwareReliabilityBasedDesignOptimizationMethodologiesMinimize Costf(x)Subjectto P[Gi(x)0]

Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodPerformanceMeasureApproach(PMA) (K.K.Choi,Univ.ofIowa)RobustDesignMinimize Variationoff(x)( )Subjectto P[Gi(x)0]

Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodHasofer-LindMethod(DoubleLoop)Inputm(k)xLoopforeachGjtocomputerbj.OptimizationLoopforcostfunctiontoupdatemx

Converge?stopyesnoStartNumberofFunctionEvaluationSingleLoopSingleVectorMethod(Chenetal,1997)startComputermConstraintDerivativesComputera(0)janda*(0)Computerm(0)x=x(0)+b0sxa

*(0)CallOptimizer(SQP)toupdatemx

Computerx(k)=m(k)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論