山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析_第1頁
山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析_第2頁
山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析_第3頁
山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析_第4頁
山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省威海市文登澤頭中學(xué)2022年高二數(shù)學(xué)理下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知等差數(shù)列{an}的前n項和為Sn,且a3+a4+a5+a6+a7=20,則S9=()A.18 B.36 C.60 D.72參考答案:B【考點(diǎn)】等差數(shù)列的前n項和.【分析】由等差數(shù)列的通項公式得a3+a4+a5+a6+a7=5a5=20,解得a5=4,從而S9=,由此能求出結(jié)果.【解答】解:∵等差數(shù)列{an}的前n項和為Sn,且a3+a4+a5+a6+a7=20,∴a3+a4+a5+a6+a7=5a5=20,解得a5=4,∴S9==36.故選:B.【點(diǎn)評】本題考查等差數(shù)列的前9項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.2.雙曲線的漸近線方程是A. B. C. D.參考答案:C略3.用半徑為的圓形鐵皮剪出一個圓心角為的扇形,制成一個圓錐形容器,要使容器的容積最大,扇形的圓心角

A.

B.

C.

D.參考答案:D略4.給定原命題:“若a2+b2=0,則a、b全為0”,那么下列命題形式正確的是()A.逆命題:若a、b全為0,則a2+b2=0B.否命題:若a2+b2≠0,則a、b全不為0C.逆否命題:若a、b全不為0,則a2+b2≠0D.否定:若a2+b2=0,則a、b全不為0參考答案:A【考點(diǎn)】25:四種命題間的逆否關(guān)系.【分析】根據(jù)四種命題之間的關(guān)系,分別寫出原命題的逆命題、否命題、逆否命題,再寫出原命題的否定命題即可得出結(jié)論.【解答】解:原命題:“若a2+b2=0,則a、b全為0”,所以逆命題是:“若a、b全為0,則a2+b2=0”,選項A正確;否命題是:“若a2+b2≠0,則a、b不全為0”,選項B錯誤;逆否命題是:“若a、b不全為0,則a2+b2≠0”,選項C錯誤;否定命題是:“若a2+b2=0,則a、b不全為0”,選項D錯誤.故選:A.5.已知甲、乙兩地距丙的距離均為100km,且甲地在丙地的北偏東20°處,乙地在丙地的南偏東40°處,則甲乙兩地的距離為()A.100km B.200km C.100km D.100km參考答案:D考點(diǎn):解三角形的實際應(yīng)用.專題:應(yīng)用題;解三角形.分析:根據(jù)甲、乙兩地距丙的距離均為100km,且甲地在丙地的北偏東20°處,乙地在丙地的南偏東40°處,利用余弦定理即可求出甲乙兩地的距離.解答:解:由題意,如圖所示OA=OB=100km,∠AOB=120°,∴甲乙兩地的距離為AB==100km,故選:D.點(diǎn)評:本題考查解三角形的實際應(yīng)用,考查余弦定理,考查學(xué)生的計算能力,比較基礎(chǔ).6.不等式的解集為()A.[﹣1,3] B.[﹣3,﹣1] C.[﹣3,1] D.[1,3]參考答案:C【考點(diǎn)】指、對數(shù)不等式的解法.【專題】轉(zhuǎn)化思想;數(shù)學(xué)模型法;不等式的解法及應(yīng)用.【分析】根據(jù)指數(shù)函數(shù)的單調(diào)性,把原不等式化為≤2﹣1,求出解集即可.【解答】解:不等式可化為≤2﹣1,即x2+2x﹣4≤﹣1,整理得x2+2x﹣3≤0,解得﹣3≤x≤1,所以原不等式的解集為[﹣3,1].故選:C.【點(diǎn)評】本題考查了利用指數(shù)函數(shù)求不等式的解集的應(yīng)用問題,是基礎(chǔ)題目.7.將5名學(xué)生分到A,B,C三個宿舍,每個宿舍至少1人至多2人,其中學(xué)生甲不到A宿舍的不同分法有()A.18種

B.36種

C.48種

D.60種參考答案:D略8.某種心臟病手術(shù),成功率為0.6,現(xiàn)準(zhǔn)備進(jìn)行3例此種手術(shù),利用計算機(jī)取整數(shù)值隨機(jī)數(shù)模擬,用0,1,2,3代表手術(shù)不成功,用4,5,6,7,8,9代表手術(shù)成功,產(chǎn)生20組隨機(jī)數(shù):966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,則恰好成功1例的概率為(

A.0.6

B.0.4

C.

D.參考答案:B略9.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時氣球的高度是60m,則河流的寬度BC等于()A.240(-1)mB.180(-1)mC.120(-1)m

D.30(+1)m參考答案:C10.下列說法正確的是()A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”B.命題“x0∈R,x+x0-1<0”的否定是“x∈R,x2+x-1>0”C.命題“若x=y(tǒng),則sinx=siny”的逆否命題為假命題D.若“p或q”為真命題,則p,q中至少有一個為真命題參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.在正四面體ABCD中,E、F分別是BC、AD中點(diǎn),則異面直線AE與CF所成角的余弦值是________.參考答案:[解析]設(shè)正四面體的棱長為1,=a,=b,=c,則=(a+b),=c-b,|a|=|b|=|c|=1,a·b=b·c=c·a=,∴·=(a+b)·(c-b)=a·c+b·c-a·b-|b|2=-,||2=(|a|2+|b|2+2a·b)=,||2=|c|2+|b|2-b·c=,∴||=,||=,cos〈,〉==-,因異面直線所成角是銳角或直角,∴AE與CF成角的余弦值為12.六個人排成一排,丙在甲乙兩個人中間(不一定相鄰)的排法有__________種.參考答案:240略13.下面四個命題

①a,b均為負(fù)數(shù),則

其中正確的是

(填命題序號)參考答案:①②④14.已知拋物線方程為,直線的方程為,在拋物線上有一動點(diǎn)P到y(tǒng)軸的距離為,P到直線的距離為,則的最小 參考答案:略15.若非零實數(shù)a,b滿足條件,則下列不等式一定成立的是_______.①;②;③;④;⑤.參考答案:④⑤【分析】可以利用不等式的性質(zhì)或者特殊值求解.【詳解】對于①,若,則,故①不正確;對于②,若,則,故②不正確;對于③,若,則,故③不正確;對于④,由為增函數(shù),,所以,故④正確;對于⑤,由為減函數(shù),,所以,故⑤正確;所以正確的有④⑤.【點(diǎn)睛】本題主要考查不等式的性質(zhì),不等式的正確與否一般是利用特殊值來驗證.16.設(shè)實數(shù)滿足不等式組,則的取值范圍是________.參考答案:

17.命題“?x∈R,x2+x+1≥0”的否定是.參考答案:?x∈R,x2+x+1<0【考點(diǎn)】命題的否定.【專題】簡易邏輯.【分析】直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【解答】解:因為全稱命題的否定是特稱命題,所以命題“?x∈R,x2+x+1≥0”的否定是:?x∈R,x2+x+1<0;故答案為:?x∈R,x2+x+1<0.【點(diǎn)評】本題考查命題的否定特稱命題與全稱命題的關(guān)系,基本知識的考查.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)在平面直角坐標(biāo)系中,點(diǎn)到兩定點(diǎn)F1和F2的距離之和為,設(shè)點(diǎn)的軌跡是曲線.求曲線的方程;參考答案:解:(1)設(shè),由橢圓定義可知,點(diǎn)的軌跡是以和為焦點(diǎn),長半軸長為2的橢圓.它的短半軸長,故曲線的方程為:

略19.(本小題滿分14分)已知圓的方程是x2+y2=5,且圓的切線滿足下列條件,求圓切線方程(1)過圓外一點(diǎn)Q(3,1)(2)過圓上一點(diǎn)P(-2,1)

參考答案:(1)若直線不與x軸垂直時,設(shè)切線方程為y-1=k(x-3),則圓心(0,0)到切線的距離等于半徑即T(1-3k)2=5(k2+1)Tk=,k=2若直線與x軸垂直時,x=3,與圓相離,不合題意;綜上所述,所求的切線方程是:x+2y-5=0,2x-y-5=0························7分20.有9本不同的課外書,分給甲、乙、丙三名同學(xué),求在下列條件下,各有多少種分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本;(3)甲、乙、丙各得3本.參考答案:(1)分三步完成:第一步:從9本不同的書中,任取4本分給甲,有C種方法;第二步:從余下的5本書中,任取3本給乙,有C種方法;第三步:把剩下的書給丙有C種方法,∴共有不同的分法有C·C·C=1260(種).(4分)(2)分兩步完成:第一步:將4本、3本、2本分成三組有C·C·C種方法;第二步:將分成的三組書分給甲、乙、丙三個人,有A種方法,∴共有C·C·C·A=7560(種).(4)(3)用與(1)相同的方法求解,得C·C·C=1680(種).(4分)21.設(shè)是各項均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項得到的數(shù)列(按原來的順序)是等比數(shù)列。(1)當(dāng)n=4時,求的數(shù)值;w.w.w.k.s.5.u.c.o.m

(2)求n的所有可能值。參考答案:解析:(1)當(dāng)n=4時,中不可能刪去首項或末項,否則等差數(shù)列中連續(xù)三項成等比數(shù)列,則推出d=0。若刪去,則有,即,化簡得,因為d0,所以,故得;若刪去,則有,即,化簡得,因為d0,所以,故得.綜上或-4。(2)若,則從滿足題設(shè)的數(shù)列中刪去一項后得到的數(shù)列,必有原數(shù)列中的連續(xù)三項,從而這三項既成等差數(shù)列又成等比數(shù)列,故由“基本事實”知,數(shù)列的公差必為0,這與題設(shè)矛盾。所以滿足題設(shè)的數(shù)列的項數(shù)。又因題設(shè),故n=4或5。當(dāng)n=4時,由(1)中的討論知存在滿足題設(shè)的數(shù)列。當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論