無錫市某實(shí)驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一年級上冊期末檢測模擬試題含解析_第1頁
無錫市某實(shí)驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一年級上冊期末檢測模擬試題含解析_第2頁
無錫市某實(shí)驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一年級上冊期末檢測模擬試題含解析_第3頁
無錫市某實(shí)驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一年級上冊期末檢測模擬試題含解析_第4頁
無錫市某實(shí)驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一年級上冊期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷

注意事項

1.考試結(jié)束后,請將本試卷和答題卡一并交回.

2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.

3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.

4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他

答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.

5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.

一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的

1.下列函數(shù)中在定義域上為減函數(shù)的是()

A.y=xB.y=lgx

C.y=2rD.y=/

2.函數(shù)y=的定義域為。

2x——3x—2

A(-oo,3]

C.(0,2)u(2,3)D.[0,2)U(2,3]

3.祖晅原理也稱祖氏原理,一個涉及幾何求積的著名命題.內(nèi)容為:“幕勢既同,則積不容異”.“幕”是截面積,“勢”

是幾何體的高.意思是兩個等高的幾何體,如在等高處的截面積相等,體積相等.設(shè)A,5為兩個等高的幾何體,p:

A、8的體積相等,q:A、8在同一高處的截面積相等.根據(jù)祖瞄原理可知,p是g的()

A.充分必要條件B.充分不必要條件

C.必要不充分條件D.既不充分也不必要條件

4.計算2sin2105°-1的結(jié)果等于(

5.含有三個實(shí)數(shù)的集合可表示為{a,也可表示為{a?,a+b,0},則az顯示2。13的值為()

D+1

6.G_i_B,Ia1=2,仍|=3,且(3?+2&),LUa-b則入等于()

33

A.-B.一一

22

3

C.±—D.1

2

7.在AABC中,AB=c>AC=b.若點(diǎn)。滿足麗=2反,則赤=()

21-5-2r

A.—br+—cB.—c——b

3333

2f1-12-

C.—b——cD.—br+—c

3333

8.函數(shù)〃x)=log“(x+2)-2(a>0,且aHl)的圖象必過定點(diǎn)

A.(l,o)2)

3i_1o_1

9.比較a=log[5,b=(§)5,c=(§)5的大?。ǎ?/p>

\.c<b<aB.c<a<b

C.a<b<cD.a<c<b

10.“a>0,Z?>0"是“ah>0”的()

A.充分不必要條件B.必要不充分條件

C充要條件D.既不充分也不必要條件

二、填空題:本大題共6小題,每小題5分,共30分。

11.命題“天。eR,片—/+1=0”的否定是

12.學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與

聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)xe(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂

點(diǎn)A(10,80),過點(diǎn)8(12,78);當(dāng)xe[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于

62時,學(xué)習(xí)效果最佳.要使得學(xué)生學(xué)習(xí)效果最佳,則教師安排核心內(nèi)容的時間段為.(寫成區(qū)間形式)

則〃2)=

14.寫出一個定義域為R,周期為兀的偶函數(shù)/(x)=

15.如圖所示,正方體的棱長為1,B'CCBC=0,則/0與HC所成角的度數(shù)為

x2,x<0

16.已知函數(shù)/(x)=<4x,若關(guān)于x方程.產(chǎn)(司+(加一3)"(力+加=。恰好有6個不相等的實(shí)數(shù)解,

X+1

則實(shí)數(shù)團(tuán)的取值范圍為.

三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。

17.已知定義在(F,-1)D(L”)上的奇函數(shù)“X)滿足:

①/⑶=1;

②對任意的X〉2均有/(x)>0;

③對任意的x>0,y>0,均有/(x+l)+/(y+l)=/(肛+1).

(1)求,”2)的值;

(2)證明〃x)在(1,+8)上單調(diào)遞增;

(3)是否存在實(shí)數(shù)。,使得/(cos2e+asin6)<3對任意的乃)恒成立?若存在,求出。的取值范圍;若不存

在,請說明理由.

|JT

18.已知函數(shù)/(x)=2sin(5X-]),xeR,

77r

(1)求/(三)的值;

(2)求函數(shù)的單調(diào)遞增區(qū)間;

(3)求/(%)在區(qū)間[三,2m上的最大值和最小值

3

19.計算求值:

,+,og23

(1)In五+2"+(logs3)x(log95)+1g乃°

,、H八4sina+2cosa_

(2)若tana=2,求---------------的值.

3sina-2cosa

20.已知集合4=x|1<x<31,集合3={司2/篦<x<1—

(1)當(dāng)m=一1時,求AIJB;

(2)若A=求實(shí)數(shù)機(jī)的取值范圍;

(3)若406=0,求實(shí)數(shù)”的取值范圍

21.已知a>0且函數(shù)/(x)=log“(l+x)+log〃(l-x).

(1)求/(x)的定義域;

(2)判斷“X)的奇偶性,并用定義證明;

(3)求使y(x)>o的x取值范圍.

參考答案

一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的

1、C

【解析】根據(jù)基本初等函數(shù)的單調(diào)性逐一判斷各個選項即可得出答案.

【詳解】對于A,由函數(shù)y=x,定義域為/?,且在R上遞增,故A不符題意;

對于B,由函數(shù)y=lgx,定義域為(0,+8),且在(0,+8)上遞增,故B不符題意;

對于C,由函數(shù)y=2-',定義域為R,且在A上遞減,故C符合題意

對于D,由函數(shù)y=d,定義域為R,且在R上遞增,故D不符題意.

故選:c

2、D

【解析】由函數(shù)解析式可得關(guān)于自變量的不等式組,其解集為函數(shù)的定義域.

3JC-X2>0r、/[

【詳解】由題設(shè)可得:2,故xe0,2)U(2,3,

2x~-3x-2*0

故選:D.

3、C

【解析】根據(jù)〃與4的推出關(guān)系判斷

【詳解】已知A,8為兩個等高的幾何體,由祖瞄原理知4=〃,而〃不能推出4,可舉反例,兩個相同的圓錐,一

個正置,一個倒置,此時兩個幾何體等高且體積相等,但在同一高處的截面積不相等,則。是q的必要不充分條件

故選:C

4、D

【解析】2sin21050-1=-cos21Ou=cos30=—.選D

2

5,B

bb

【解析】根據(jù)題意,由{a,l}={a2,a+b,0}可得a=0或一=0,

aa

bb

又由一的意義,則際0,必有一二0,

aa

貝!Jb=0,

則{a,0,l}={a2,a,0},則有即a=l或a=?L

集合{a,0,1}中,arl,則必有a=?l,

貝(Ja2012+b2°13=(-1)2012+02013=1,

故選B

點(diǎn)睛:集合的三要素是:確定性、互異性和無序性,集合的表示常用的有三種形式:列舉法,描述法,Verm圖法.研

究一個集合,我們首先要看清楚它的研究對象,是實(shí)數(shù)還是點(diǎn)的坐標(biāo)還是其它的一些元素,這是很關(guān)鍵的一步.

6、A

【解析】利用向量垂直的充要條件列出方程,利用向量的運(yùn)算律展開并代值,即可求出入

【詳解】?:萬5,;,1?6=0,,??(3^+255),,(3日+2瓦)?(幺萬一5)=0,

3

即32M2+(22-3)a-h-2^2=0,A122-18=0,解得后,

故選4

7、A

_______2__2_____22]

【解析】石=萬+而=£+;而k=£+:港一畫=)'@一£)=/+尹故選A

8、C

【解析】因為函數(shù)/(x)=log“(x+2)-2,且有l(wèi)og“l(fā)=0(。>0且。。1),

令x+2=l,則無=-1,y=-2,

所以函數(shù)/U)的圖象經(jīng)過點(diǎn)(-1,-2).

故選:C.

【點(diǎn)睛】本題主要考查對數(shù)函數(shù)/。)=1。8<產(chǎn)(。>0且4彳1)恒過定點(diǎn)(1,0),屬于基礎(chǔ)題目.

9、D

,3八!

【解析】由對數(shù)函數(shù)的單調(diào)性判斷出a=logi彳<°,再根據(jù)幕函數(shù)丫_尤不在(°,+00)上單調(diào)遞減判斷出

1-12--

(力5>(£)5>0,即可確定大小關(guān)系.

.3_]」2--

【詳解】因為。=logi2<0,(1)5>(1)5>0,所以“<c</7

故選:D

【點(diǎn)睛】本題考查利用對數(shù)函數(shù)及幕函數(shù)的單調(diào)性比較數(shù)的大小,屬于基礎(chǔ)題.

10、A

【解析】根據(jù)充分條件和必要條件的定義判斷.

【詳解】???“0>(),一>0"可推出“">0”,

"必>0"不能推出"a>0,b>On,例如a=-2,匕=-3時,ab>Q>

...“a>0,b>0”是“ab>0”充分不必要條件.

故選:A

二、填空題:本大題共6小題,每小題5分,共30分。

11、Vxe/?,x2-x+10

【解析】特稱命題的否定.

【詳解】命題“三改)€民¥-/+1=0”的否定是VXWRY-X+I工0

【點(diǎn)睛】本題考查特稱命題的否定,屬于基礎(chǔ)題;對于含有量詞的命題的否定要注意兩點(diǎn):一是要改換量詞,即把全稱(特

稱)量詞改為特稱(全稱)量詞,二是注意要把命題進(jìn)行否定.

12、(4,28)

【解析】當(dāng)xe(O,12]時,設(shè)/(x)=a(x-10)2+80,把點(diǎn)(12,78)代入能求出解析式;當(dāng)xe[12,40]時,^y=kx+b,

把點(diǎn)8(12,78)、C(40,50)代入能求出解析式,結(jié)合題設(shè)條件,列出不等式組,即可求解.

詳解】當(dāng)xe(0,12]時,設(shè)/(x)=a(x-10)2+80,

過點(diǎn)(12,78)代入得,a=--

2

則/(x)=-1(X-10)2+80,

當(dāng)xG(12,40]時,

設(shè)尸區(qū)+瓦過點(diǎn)5(12,78)、C(40,50)

'k=-1

得1,即y=-x+90,

,=90

0<x<12

由題意得,11212<x<40

或<

-^(X-10)2+80>62[-x+90>62

得4V爛12或12<x<28,

所以4<x<28,

則老師就在xG(4,28)時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳,

故答案為:(4,28)

【點(diǎn)睛】本題考查解析式的求法,考查不等式組的解法,解題時要認(rèn)真審題,注意待定系數(shù)法的合理運(yùn)用,屬于中檔

13、0

【解析】令x=l代入即可求出結(jié)果.

【詳解】令x=l,則/(2)=/。+1)=1-1=().

【點(diǎn)睛】本題主要考查求函數(shù)的值,屬于基礎(chǔ)題型.

14、cos2x(答案不唯一)

【解析】結(jié)合定義域與周期與奇偶性,寫出符合要求的三角函數(shù)即可.

【詳解】y=cos2x滿足定義域為R,最小正周期丁=三27r=兀,且為偶函數(shù),符合要求.

故答案為:cos2A;

15、30°

【解析】,.KC〃AC,.,.40與所成的角就是NO4c(或其補(bǔ)角).

VOCu平面8877C,48JL平面B877C,

:.OC±AB.XOC±OB,ABnBO=B,

,OC_L平面AB。.又AOu平面ABO,

:.OCA.OA.^Rt^AOC^,OC=—,AC=V2,sinZOAC=—=-,AZ6)AC=30°.

2AC2

即AO與所成角度數(shù)為30。.

點(diǎn)睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,

具體步驟如下:

①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;

②認(rèn)定:證明作出的角就是所求異面直線所成的角;

③計算:求該角的值,常利用解三角形;

④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補(bǔ)角作為兩條異面直線所成的角

16、

【解析】作出函數(shù)”x)的簡圖,換元,結(jié)合函數(shù)圖象可知原方程有6根可化為產(chǎn)+(加一3)/+加=0在區(qū)間(0,2)上有

兩個不等的實(shí)根,列出不等式組求解即可.

【詳解】當(dāng)工結(jié)合,,雙勾,,函數(shù)性質(zhì)可畫出函數(shù)"X)的簡圖,如下圖,

X

令t=f(x),

則由已知條件知,方程/+(m-3),+根=0在區(qū)間(0,2)上有兩個不等的實(shí)根,

△=(加一3)2-4m>0,

c3-mc

0<----<2,

則〈2即實(shí)數(shù)加的取值范圍為

/(0)=m>0,

f(2)=3m-2>0,

故答案為:

【點(diǎn)睛】本題主要考查了分段函數(shù)的圖象,二次方程根的分布,換元法,數(shù)形結(jié)合,屬于難題.

三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。

17.(1)0;(2)詳見解析;

(3)存在,1<。<9.

【解析】(1)利用賦值法即求;

(2)利用單調(diào)性的定義,由題可得/(』)+/迨二;+1=f(玉一1)『+1=/(々),結(jié)合條件可得

“與)</5),即證;

(3)利用賦值法可求/[-||=/(9)=3,結(jié)合函數(shù)的單調(diào)性可把問題轉(zhuǎn)化為,是否存在實(shí)數(shù)。,使得『-神-g>0

或1<1-"+4<9在fw(0,1]恒成立,然后利用參變分離法即求.

【小問1詳解】

?.?對任意的x>0,y>Q,均有/(x+l)+/(y+l)=/(肛+1),

令x=y=l,!5iJ/(l+l)+/(l+l)=/(l+l),

???"2)=0;

【小問2詳解】

Vx,,%,e(l,-Fw),且西<々,貝II

-1+1

++l=/(%—1+1)+/^7?+1=于(X')^77=/(工2)

1%—1玉一IXj—1J

又受三+1〉1+1=2,對任意的x〉2均有/(x)>0,

玉一1

???/(')</(9)

函數(shù)/(X)在(1,小)上單調(diào)遞增.

【小問3詳解】

?.?函數(shù)/(x)為奇函數(shù)且在(1,位)上單調(diào)遞增,

函數(shù)/(X)在(e,-1)上單調(diào)遞增,

令x=y=2,可得/(5)=2/(3)=2,令x=2,y=4,可得/(9)=/(3)+/(5)=3,

又八8+1)+/(+1=/8x11+1=0,

8

???/卜1)=/(9)=3'又函數(shù)””在(1,同上單調(diào)遞增’仆)在(—8,-1)上單調(diào)遞增’

:.由/(COS28+asin夕)<3,可得cos?8+asin6<-弓或1<cos2。+asin0<9>

O

。9,、

即是否存在實(shí)數(shù)。,使得cos28+。3118<-6或1<cos2。+asin6<9對任意的夕0(o,乃)恒成立,

O

917

令,=sin。,貝!)££(0,1],則對于cos?^4-6?sin^=l-sin28+Qsin6<——恒成立等價于產(chǎn)一〃--->0在,£(0,1]

88

恒成立,

1717

即----在(0,1]恒成立,又當(dāng)/―>0時,t--------->—oo,

StSt

9

故不存在實(shí)數(shù)a,使得cos9-。+asin。<-一恒成立,

8

對于1vcos2。+asin6<9對任意的9w(。,4)恒成立,等價于1v1-r+afv9在,£(。,“恒成立,

8

由1<1一/+〃<9,可得/<〃<,+-在,£(0,1]恒成立,

t

又京=1,,+學(xué)在,G(0,1]上單調(diào)遞減,卜+$=9

t\,人in

,l<a<9,

綜上可得,存在1<a<9使得/(cos?6+asin。)<3對任意的8w(0,%)恒成立.

【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是配湊/(百)+/(土[+1]=/1(內(nèi)—1)士?+1]=/(工2),然后利用條

(內(nèi)-1J-1)

17

件可證;第三問的關(guān)鍵是轉(zhuǎn)化為否存在實(shí)數(shù)。,使得/-3-胃>0或1<1—產(chǎn)+〃<9在恒成立,再利用參

O

變分離法解決.

一色+4E,型+4上萬(左eZ)

18、(1)1;(2)

33V7

(3)最大值為2,最小值為-1.

【解析】(1)直接利用函數(shù)的關(guān)系式求出函數(shù)的值;

⑵利用整體代換發(fā)即可求出函數(shù)的單調(diào)增區(qū)間;

(3)結(jié)合(2),利用函數(shù)的定義域求出函數(shù)的單調(diào)性,進(jìn)而即可求出函數(shù)的最大、小值.

【小問1詳解】

由./'(x)=2sin(1x-y),

得吟)=2s吟等—。)=1;

【小問2詳解】

令一2+2女乃<—x~—<—+2k7r(keZ),

2232v'

整理,得一方+4左萬W軍+4左萬(%eZ),

<rr5n

故函數(shù)/(X)的單調(diào)遞增區(qū)間為一§+4匕r,丁+4br(ZeZ);

【小問3詳解】

?r"cIZB1n、兀27r[

32363

jr54

結(jié)合⑵可知,函數(shù)/(X)的單調(diào)遞增區(qū)間為一§+4攵肛1-+4也r(keZ),

jr57r

所以函數(shù)f(x)在[彳,受]上單調(diào)遞增,在[丁,2乃]上單調(diào)遞減,

333

故當(dāng)x=2時,函數(shù)取得最小值,且最小值為

STT57r

當(dāng)x=7時,函數(shù)取得最大值,且最大值為了(手)=2.

19、(1)-

2

(2)1

【解析】(1)利用指數(shù)和對數(shù)運(yùn)算法則直接計算可得結(jié)果;

(2)分子分母同除cosa即可求得結(jié)果.

【小問1詳解】

原式=;+;x2'叫3+(logs3)x+igi」+2+\。/.

2222

小問2詳解】

sincr+2cosatana+22+2

?「tan。=2,—;------------=----------=-----=11?

3sina-2cosa3tana-26-2

20、(1)AuB=|x|-2<x<3};(2)(-oo,-2];(3)[(),+oo)

【解析】Q)求出集合B,利用并集的定義可求得集合AUB;

(2)利用A=8可得出關(guān)于實(shí)數(shù)機(jī)的不等式組,由此可解得實(shí)數(shù)加的取值范圍;

(3)分8=0和兩種情況討

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論