![山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/c1be6ee1ebb961d5532ae5deb2731021/c1be6ee1ebb961d5532ae5deb27310211.gif)
![山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/c1be6ee1ebb961d5532ae5deb2731021/c1be6ee1ebb961d5532ae5deb27310212.gif)
![山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/c1be6ee1ebb961d5532ae5deb2731021/c1be6ee1ebb961d5532ae5deb27310213.gif)
![山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/c1be6ee1ebb961d5532ae5deb2731021/c1be6ee1ebb961d5532ae5deb27310214.gif)
![山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/c1be6ee1ebb961d5532ae5deb2731021/c1be6ee1ebb961d5532ae5deb27310215.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省東營市東營區(qū)史口鎮(zhèn)中學心初級中學2024屆九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖為O、A、B、C四點在數(shù)線上的位置圖,其中O為原點,且AC=1,OA=OB,若C點所表示的數(shù)為x,則B點所表示的數(shù)與下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣12.《代數(shù)學》中記載,形如的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為的矩形,得到大正方形的面積為,則該方程的正數(shù)解為.”小聰按此方法解關(guān)于的方程時,構(gòu)造出如圖2所示的圖形,已知陰影部分的面積為36,則該方程的正數(shù)解為()A.6 B. C. D.3.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的直徑為5,BC=4,則AB的長為()A.2 B.2 C.4 D.54.若一個扇形的圓心角是45°,面積為,則這個扇形的半徑是()A.4 B. C. D.5.下列四個函數(shù)中,y的值隨著x值的增大而減小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)6.如圖所示,中,,,點為中點,將繞點旋轉(zhuǎn),為中點,則線段的最小值為()A. B. C. D.7.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.8.如圖,在⊙O中,弦AB為8mm,圓心O到AB的距離為3mm,則⊙O的半徑等于()A.3mm B.4mm C.5mm D.8mm9.如圖,線段與相交于點,連接,且,要使,應(yīng)添加一個條件,不能證明的是()A. B. C. D.10.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A'OB',若∠AOB=15°,則∠AOB'的度數(shù)是()A.25° B.30° C.35° D.40°11.如圖,在半徑為1的⊙O中,直徑AB把⊙O分成上、下兩個半圓,點C是上半圓上一個動點(C與點A、B不重合),過點C作弦CD⊥AB,垂足為E,∠OCD的平分線交⊙O于點P,設(shè)CE=x,AP=y(tǒng),下列圖象中,最能刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.12.下列事件中,是必然事件的是()A.購買一張彩票,中獎 B.射擊運動員射擊一次,命中靶心C.經(jīng)過有交通信號燈的路口,遇到紅燈 D.任意畫一個三角形,其內(nèi)角和是180°二、填空題(每題4分,共24分)13.圓錐的底面半徑是1,側(cè)面積是3π,則這個圓錐的側(cè)面展開圖的圓心角為________.14.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___15.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是__________.16.如圖,中,,,將斜邊繞點逆時針旋轉(zhuǎn)至,連接,則的面積為_______.17.如圖,在平面直角坐標系中,函數(shù)和的圖象分別為直線,,過點(1,0)作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,…依次進行下去,則點的坐標為_________.18.已知方程x2+mx+3=0的一個根是1,則它的另一個根是_____,m的值是______.三、解答題(共78分)19.(8分)某市計劃建設(shè)一項水利工程,工程需要運送的土石方總量為米3,某運輸公司承辦了這項工程運送土石方的任務(wù).(1)完成運送任務(wù)所需的時間(單位:天)與運輸公司平均每天的工作量(單位:米3/天)之間具有怎樣的函數(shù)關(guān)系?(2)已知這個運輸公司現(xiàn)有50輛卡車,每天最多可運送土石方米3,則該公司完成全部運輸任務(wù)最快需要多長時間?(3)運輸公司連續(xù)工作30天后,天氣預(yù)報說兩周后會有大暴雨,公司決定10日內(nèi)把剩余的土石方運完,平均每天至少增加多少輛卡車?20.(8分)已知:△ABC內(nèi)接于⊙O,過點A作直線EF.(1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):①或②;(2)如圖乙,AB是非直徑的弦,若∠CAF=∠B,求證:EF是⊙O的切線.(3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OC⊥AB.21.(8分)某食品代理商向超市供貨,原定供貨價為元/件,超市售價為元/件.為打開市場超市決定在第一季度對產(chǎn)品打八折促銷,第二季度再回升個百分點,為保證超市利潤,代理商承諾在供貨價基礎(chǔ)上向超市返點試問平均每季度返多少個百分點,半年后超市的銷售利潤回到開始供貨時的水平?22.(10分)如圖,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的長.23.(10分)閱讀下列材料,完成相應(yīng)的學習任務(wù):如圖(1)在線段AB上找一點C,C把AB分為AC和BC兩條線段,其中AC>BC.若AC,BC,AB滿足關(guān)系A(chǔ)C2=BC?AB.則點C叫做線段AB的黃金分割點,這時=≈0.618,人們把叫做黃金分割數(shù),我們可以根據(jù)圖(2)所示操作方法我到線段AB的黃金分割點,操作步驟和部分證明過程如下:第一步,以AB為邊作正方形ABCD.第二步,以AD為直徑作⊙F.第三步,連接BF與⊙F交于點G.第四步,連接DG并延長與AB交于點E,則E就是線段AB的黃金分割點.證明:連接AG并延長,與BC交于點M.∵AD為⊙F的直徑,∴∠AGD=90°,∵F為AD的中點,∴DF=FG=AF,∴∠3=∠4,∠5=∠6,∵∠2+∠5=90°,∠5+∠4=90°,∴∠2=∠4=∠3=∠1,∵∠EBG=∠GBA,∴△EBG∽△GBA,∴=,∴BG2=BE?AB…任務(wù):(1)請根據(jù)上面操作步驟與部分證明過程,將剩余的證明過程補充完整;(提示:證明BM=BG=AE)(2)優(yōu)選法是一種具有廣泛應(yīng)用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應(yīng)用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是(填出下列選項的字母代號)A.華羅庚B.陳景潤C.蘇步青24.(10分)在平面直角坐標系中,拋物線經(jīng)過點,.(1)求這條拋物線所對應(yīng)的函數(shù)表達式.(2)求隨的增大而減小時的取值范圍.25.(12分)關(guān)于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一個根為﹣1,求k的值及方程的另一個根.26.如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.(1)求的值和的值以及點的坐標;(2)觀察反比例函數(shù)的圖像,當時,請直接寫出自變量的取值范圍;(3)以為邊作菱形,使點在軸正半軸上,點在第一象限,求點的坐標;(4)在y軸上是否存在點,使的值最?。咳舸嬖?,請求出點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、B【解題分析】分析:首先根據(jù)AC=1,C點所表示的數(shù)為x,求出A表示的數(shù)是多少,然后根據(jù)OA=OB,求出B點所表示的數(shù)是多少即可.詳解:∵AC=1,C點所表示的數(shù)為x,∴A點表示的數(shù)是x﹣1,又∵OA=OB,∴B點和A點表示的數(shù)互為相反數(shù),∴B點所表示的數(shù)是﹣(x﹣1).故選B.點睛:此題主要考查了在數(shù)軸上表示數(shù)的方法,以及數(shù)軸的特征和應(yīng)用,要熟練掌握.2、B【分析】根據(jù)已知的數(shù)學模型,同理可得空白小正方形的邊長為,先計算出大正方形的面積=陰影部分的面積+4個小正方形的面積,可得大正方形的邊長,從而得結(jié)論.【題目詳解】x2+6x+m=0,x2+6x=-m,∵陰影部分的面積為36,∴x2+6x=36,4x=6,x=,同理:先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為x的矩形,得到大正方形的面積為36+()2×4=36+9=45,則該方程的正數(shù)解為.故選:B.【題目點撥】此題考查了解一元二次方程的幾何解法,用到的知識點是長方形、正方形的面積公式,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程.3、A【分析】連接BO,根據(jù)垂徑定理得出BD,在△BOD中利用勾股定理解出OD,從而得出AD,在△ABD中利用勾股定理解出AB即可.【題目詳解】連接OB,∵AO⊥BC,AO過O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故選:A.【題目點撥】本題考查圓的垂徑定理及勾股定理的應(yīng)用,關(guān)鍵在于熟練掌握相關(guān)的基礎(chǔ)性質(zhì).4、A【分析】根據(jù)扇形面積公式計算即可.【題目詳解】解:設(shè)扇形的半徑為為R,由題意得,解得R=4.故選A.【題目點撥】本題考查了扇形的面積公式,R是扇形半徑,n是弧所對圓心角度數(shù),π是圓周率,L是扇形對應(yīng)的弧長.那么扇形的面積為:.5、C【分析】根據(jù)一次函數(shù)、反比例函數(shù)、二次函數(shù)的增減性,結(jié)合自變量的取值范圍,逐一判斷.【題目詳解】解:A、y=2x,正比例函數(shù),k>0,故y隨著x增大而增大,錯誤;B、y=x+1,一次函數(shù),k>0,故y隨著x增大而增大,錯誤;C、y=(x>0),反比例函數(shù),k>0,故在第一象限內(nèi)y隨x的增大而減小,正確;D、y=x2,當x>0時,圖象在對稱軸右側(cè),y隨著x的增大而增大,錯誤.故選C.【題目點撥】本題考查二次函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);反比例函數(shù)的性質(zhì).6、B【分析】如圖,連接CN.想辦法求出CN,CM,根據(jù)MN≥CN?CM即可解決問題.【題目詳解】如圖,連接CN.在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2,BC=AC=3,∵CM=MB=BC=,∵A1N=NB1,∴CN=A1B1=,∵MN≥CN?CM,∴MN≥,即MN≥,∴MN的最小值為,故選:B.【題目點撥】本題考查解直角三角形,旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.7、D【分析】連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【題目詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【題目點撥】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.8、C【分析】連接OA,根據(jù)垂徑定理,求出AD,根據(jù)勾股定理計算即可.【題目詳解】連接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故選C.【題目點撥】本題考查的是垂徑定理,垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.9、D【分析】根據(jù)三角形全等的判定定理逐項判斷即可.【題目詳解】A、在和中,則,此項不符題意B、在和中,則,此項不符題意C、在和中,則,此項不符題意D、在和中,,但兩組相等的對應(yīng)邊的夾角和未必相等,則不能證明,此項符合題意故選:D.【題目點撥】本題考查了三角形全等的判定定理,熟記各定理是解題關(guān)鍵.10、B【題目詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故選B.11、A【分析】連接OP,根據(jù)條件可判斷出PO⊥AB,即AP是定值,與x的大小無關(guān),所以是平行于x軸的線段.要注意CE的長度是小于1而大于0的.【題目詳解】連接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y(tǒng)=(0<x<1).故選A.【題目點撥】解決有關(guān)動點問題的函數(shù)圖象類習題時,關(guān)鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關(guān)系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運用.12、D【分析】先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【題目詳解】A.購買一張彩票中獎,屬于隨機事件,不合題意;B.射擊運動員射擊一次,命中靶心,屬于隨機事件,不合題意;C.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件,不合題意;D.任意畫一個三角形,其內(nèi)角和是180°,屬于必然事件,符合題意;故選D.【題目點撥】本題主要考查了必然事件,事先能肯定它一定會發(fā)生的事件稱為必然事件.二、填空題(每題4分,共24分)13、120°【解題分析】根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積公式即可求出圓心角的度數(shù).【題目詳解】∵側(cè)面積為3π,∴圓錐側(cè)面積公式為:S=πrl=π×1×l=3π,解得:l=3,∴扇形面積為3π=,解得:n=120,∴側(cè)面展開圖的圓心角是120度.故答案為:120°.【題目點撥】此題主要考查了圓錐的側(cè)面積公式應(yīng)用以及與展開圖扇形面積關(guān)系,求出圓錐的母線長是解決問題的關(guān)鍵.14、【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【題目詳解】解:連接BE
∵DE:EC=3:1
∴設(shè)DE=3k,EC=k,則CD=4k
∵ABCD是平行四邊形
∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4
∵DE:EC=3:1
∴S△BDE:S△BEC=3:1
設(shè)S△BDE=3a,S△BEC=a
則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19
故答案為:.【題目點撥】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.15、【分析】根據(jù)根的判別式即可求出答案;【題目詳解】解:由題意可知:解得:故答案為:【題目點撥】本題考查一元二次方程根的判別式,解題的關(guān)鍵是熟練掌握一元二次方程根的判別式并應(yīng)用.16、8【分析】過點B'作B'E⊥AC于點E,由題意可證△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面積.【題目詳解】解:如圖:過點B'作B'E⊥AC于點E∵旋轉(zhuǎn)∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案為:.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),利用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關(guān)鍵.17、【解題分析】根據(jù)一次函數(shù)圖象上點的坐標特征可得出點A1、A2、A3、A4、A5、A6、A7、A8等的坐標,根據(jù)坐標的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”,依此規(guī)律結(jié)合2019=504×4+3即可找出點A2019的坐標.【題目詳解】解:當x=1時,y=2,
∴點A1的坐標為(1,2);
當y=-x=2時,x=-2,
∴點A2的坐標為(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù)).
∵2019=504×4+3,
∴點A2019的坐標為(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案為(-21009,-21010).【題目點撥】本題考查一次函數(shù)圖象上點的坐標特征、正比例函數(shù)的圖象以及規(guī)律型中點的坐標,根據(jù)坐標的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”是解題的關(guān)鍵.18、3-4【解題分析】試題分析:根據(jù)韋達定理可得:·==3,則方程的另一根為3;根據(jù)韋達定理可得:+=-=4=-m,則m=-4.考點:方程的解三、解答題(共78分)19、(1);(2)該公司完成全部運輸任務(wù)最快需要50天;(3)每天至少增加50輛卡車.【分析】(1)根據(jù)“平均每天的工作量×工作時間=工作總量”即可得出結(jié)論;(2)根據(jù)“工作總量÷平均每天的工作量=工作時間”即可得出結(jié)論;(3)先求出30天后剩余的工作量,然后利用剩余10天每天的工作量÷每輛汽車每天的工作量即可求出需要多少輛汽車,從而求出結(jié)論.【題目詳解】解:(1)由題意得:,變形,得;(2)當時,,答:該公司完成全部運輸任務(wù)最快需要50天.(3)輛,輛答:每天至少增加50輛卡車.【題目點撥】此題考查的是反比例函數(shù)的應(yīng)用,掌握實際問題中的等量關(guān)系是解決此題的關(guān)鍵.20、(1)①OA⊥EF;②∠FAC=∠B;(2)見解析;(3)見解析.【分析】(1)添加條件是:①OA⊥EF或∠FAC=∠B根據(jù)切線的判定和圓周角定理推出即可.(2)作直徑AM,連接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根據(jù)切線的判定推出即可.(3)由同圓的半徑相等得到OA=OB,所以點O在AB的垂直平分線上,根據(jù)∠FAC=∠B,∠BAC=∠FAC,等量代換得到∠BAC=∠B,所以點C在AB的垂直平分線上,得到OC垂直平分AB.【題目詳解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半徑,∴EF是⊙O切線,②∵AB是⊙0直徑,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半徑,∴EF是⊙O切線,故答案為:OA⊥EF或∠FAC=∠B,(2)作直徑AM,連接CM,即∠B=∠M(在同圓或等圓中,同弧所對的圓周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直徑,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半徑,∴EF是⊙O的切線.(3)∵OA=OB,∴點O在AB的垂直平分線上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴點C在AB的垂直平分線上,∴OC垂直平分AB,∴OC⊥AB.【題目點撥】本題考查了切線的判定,圓周角定理,三角形的內(nèi)角和定理等知識點,注意:經(jīng)過半徑的外端且垂直于半徑的直線是圓的切線,直徑所對的圓周角是直角.21、代理商平均每個季度向超市返個百分點,半年后超市的利潤回到開始供貨時的水平.【分析】設(shè)代理商平均每個季度向超市返個百分點,根據(jù)題意列出方程,解方程,即可得到答案.【題目詳解】解:設(shè)代理商平均每個季度向超市返個百分點,由題意得:,解得:(舍去).∴代理商平均每個季度向超市返個百分點,半年后超市的利潤回到開始供貨時的水平.【題目點撥】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是找到題目的等量關(guān)系,列出方程.22、DE=8.【分析】先根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)證得,再根據(jù)平行線分線段成比例即可得.【題目詳解】如圖,CD平分又,即故DE的長為8.【題目點撥】本題考查了角平分線的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)、平行線分線段成比例,通過等角對等邊證出是解題關(guān)鍵.23、(1)見解析;(2)A【分析】(1)利用相全等三角形的判定和性質(zhì)、相似三角形的性質(zhì)以及平行線的性質(zhì)證明BM=BG=AE即可解決問題.
(2)為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.【題目詳解】(1)補充證明:∵∠2=∠4,∠ABM=∠DAE,AB=AD,∴△ABM≌△DAE(ASA),∴BM=AE,∵AD∥BC,∴∠7=∠5=∠6=∠8,∴BM=BG=AE,∴AE2=BE?AB,∴點E是線段AB的黃金分割點.(2)優(yōu)選法是一種具有廣泛應(yīng)用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應(yīng)用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.故答案為A.【題目點撥】本題考查作圖-相似變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),正方形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考創(chuàng)新題型.24、(1),(2)隨的增大而減小時.【解題分析】(1)把,代入解析式,解方程組求出a、b的值即可;(2)根據(jù)(1)中所得解析式可得對稱軸,a>0,在對稱軸左側(cè)y隨的增大而減小根據(jù)二次函數(shù)的性質(zhì)即可得答案.【題目詳解】(1)∵拋物線經(jīng)過點,.∴解得∴這條拋物線所對應(yīng)的函數(shù)表達式為.(2)∵拋物線的對稱軸為直線,∵,∴圖象開口向上,∴y隨的增大而減小時x<1.【題目點撥】本題考查待定系數(shù)法確定二次函數(shù)解析式及二次函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淺談EPC總承包模式下的造價管理與控制
- 2025年度住宅小區(qū)綠化工程承包合同范本-@-1
- 2025年新能源車輛配送及維護保養(yǎng)服務(wù)合同
- 勞務(wù)合同范本內(nèi)容
- 個人信譽合同范例
- 借款合同范例匯編
- 勞動終止合同范例
- 上海個人租賃合同范本
- 個人吊車轉(zhuǎn)讓合同范本
- 企業(yè)藥品采購合同范例
- NB-T 10609-2021 水電工程攔漂排設(shè)計規(guī)范
- 藝術(shù)課程標準(2022年版)
- 衛(wèi)生部手術(shù)分級目錄(2023年1月份修訂)
- 即興口語(姜燕)-課件-即興口語第一章PPT-中國傳媒大學
- 文物保護項目可行性研究報告
- 冷卻塔是利用水和空氣的接觸
- 我國古代職業(yè)教育的發(fā)展
- 企業(yè)注銷鑒證工作底稿
- 環(huán)境因素多因子評價方法
- 冷卻水路設(shè)計原則與優(yōu)化實例
- 門窗類英語匯總
評論
0/150
提交評論