版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
參數(shù)估計主要內(nèi)容:抽樣誤差與區(qū)間估計populationsamplesamplesampling抽樣研究(samplingstudy):在總體中隨機(jī)抽取一定數(shù)量觀察單位作為樣本。由樣本信息推斷總體特征,這一過程稱為統(tǒng)計推斷(statisticalinference)100份樣本的均數(shù)和標(biāo)準(zhǔn)差
將這100份樣本的均數(shù)看成新變量值,按第二章的頻數(shù)分布方法,得到這100個樣本均數(shù)得直方圖見圖1。圖1隨機(jī)抽樣所得100個樣本均數(shù)的分布100個樣本均數(shù)的抽樣分布特點(diǎn):①
②100個樣本均數(shù)中,各樣本均數(shù)間存在差異,但各樣本均數(shù)在總體均數(shù)周圍波動。③樣本均數(shù)的分布曲線為中間高,兩邊低,左右對稱,近似服從正態(tài)分布。
④樣本均數(shù)的標(biāo)準(zhǔn)差明顯變?。杭礃颖揪鶖?shù)的標(biāo)準(zhǔn)差,可用于衡量抽樣誤差的大小。因通常σ未知,計算標(biāo)準(zhǔn)誤采用下式:標(biāo)準(zhǔn)誤(standarderror,SE)
通過增加樣本含量n來降低抽樣誤差。樣本均數(shù)的標(biāo)準(zhǔn)差稱為標(biāo)準(zhǔn)誤。標(biāo)準(zhǔn)誤與標(biāo)準(zhǔn)差成正比,當(dāng)總體中各觀測值變異很小時,樣本均數(shù)與總體均數(shù)的差異小,抽樣誤差小。標(biāo)準(zhǔn)誤與樣本含量的平方根成反比,樣本含量越大,抽樣誤差越小標(biāo)準(zhǔn)誤反映了樣本均數(shù)間的離散程度,也反映了樣本均數(shù)與總體均數(shù)的差異。計算100個樣本的標(biāo)準(zhǔn)差S,由此可計算每一樣本的抽樣誤差大小。第99個樣本3個抽樣實驗結(jié)果圖示抽樣實驗小結(jié)
均數(shù)的均數(shù)圍繞總體均數(shù)上下波動。
均數(shù)的標(biāo)準(zhǔn)差即標(biāo)準(zhǔn)誤與總體標(biāo)準(zhǔn)差相差一個常數(shù)的倍數(shù),即
樣本均數(shù)的標(biāo)準(zhǔn)誤(StandardError)=樣本標(biāo)準(zhǔn)差/
從正態(tài)總體N(m,s2)中抽取樣本,獲得均數(shù)的分布仍近似呈正態(tài)分布N(m,s2/n)
。中心極限定理centrallimittheorem①即使從非正態(tài)總體中抽取樣本,所得均數(shù)分布仍近似呈正態(tài)。②隨著樣本量的增大,樣本均數(shù)的變異范圍也逐漸變窄。描寫抽樣誤差大小的統(tǒng)計量稱為標(biāo)準(zhǔn)誤。
對計量資料,其計算公式為:影響抽樣誤差的因素
觀察個體具有的個體差異。樣本含量。抽樣方法。按抽樣誤差大小排序整群抽樣,單純隨機(jī)抽樣,系統(tǒng)抽樣,分層抽樣。
例1
測量140名正常人的空腹血糖,得試計算標(biāo)準(zhǔn)誤。
t分布(t-distribution)隨機(jī)變量XN(m,s2)標(biāo)準(zhǔn)正態(tài)分布N(0,12)Z變換均數(shù)標(biāo)準(zhǔn)正態(tài)分布N(0,12)Studentt分布自由度:n-1圖2不同自由度下的t分布圖t分布的特征①以0為中心,左右對稱的單峰分布;②t分布曲線是一簇曲線,其形態(tài)變化與自由度的大小有關(guān)。自由度越小,則t值越分散,曲線越低平;自由度逐漸增大時,t分布逐漸逼近Z分布(標(biāo)準(zhǔn)正態(tài)分布);當(dāng)趨于∞時,t分布即為Z分布。t界值表(附表2)1.8122.228-2.228tf(t)ν=10的t分布圖
參數(shù)的估計點(diǎn)估計(pointestimation):由樣本統(tǒng)計量直接估計總體參數(shù)區(qū)間估計(intervalestimation):在一定可信度下,同時考慮抽樣誤差總體均數(shù)的估計參數(shù)估計:用樣本指標(biāo)值(統(tǒng)計量)
估計總體指標(biāo)值(參數(shù))。(1
)稱為可信度或置信度(confidencelevel),常取95%。置信區(qū)間通常兩個數(shù)值即置信限(confidencelimit,CL)構(gòu)成,較小的稱為置信下限(lowerlimit,L),較大的稱為置信上限(upperlimit,U),一、置信區(qū)間的有關(guān)概念
按預(yù)先給定的概率(1
),確定一個包含未知總體參數(shù)的范圍。這一范圍稱為參數(shù)的可信區(qū)間或置信區(qū)間(confidenceinterval,CI)二、總體均數(shù)置信區(qū)間的計算s未知,且n較小,按t分布s已知,或s未知但n足夠大,按Z分布Z0.05/2=1.96
三、可信區(qū)間估計的優(yōu)劣
一是可信度1
(準(zhǔn)確度),愈接近1愈好,如99%的可信度比95%的可信度要好;二是區(qū)間的寬度(精密度),區(qū)間愈窄愈好。當(dāng)樣本含量為定值時,上述兩者互相矛盾。
在可信度確定的情況下,增加樣本含量可減小區(qū)間寬度。四、總體均數(shù)可信區(qū)間與參考值范圍的區(qū)別
測得25名1歲嬰兒血紅蛋白均數(shù)為123.7g/L,標(biāo)準(zhǔn)差為11.9g/L。計算1歲嬰兒血紅蛋白均數(shù)的95%可信區(qū)間。查表即1歲嬰兒血紅蛋白均數(shù)的95%可信區(qū)間(118.8,128.6).測量140名正常人的空腹血糖,得試計算95%可信區(qū)間。95%可信區(qū)間為(88.55±1.96×1.096)即(86.40,90.70)。假設(shè)檢驗的概念與原理
1.思維邏輯
2.基本步驟假設(shè)檢驗的原理已知一般中學(xué)男生的心率平均值為74次/分鐘,標(biāo)準(zhǔn)差6次/分鐘,為了研究經(jīng)常參加體育鍛煉的中學(xué)男生心臟功能是否增強(qiáng),在某地區(qū)中學(xué)中隨機(jī)抽取常年參加體育鍛煉的男生100名,得到心率平均值為65次/分鐘。是由于碰巧?還是由于必然的原因?運(yùn)用假設(shè)檢驗來處理這類問題。假設(shè)檢驗的概念由樣本信息對相應(yīng)總體的特征進(jìn)行推斷稱為統(tǒng)計推斷。若對所估計的總體首先提出一個假設(shè),然后通過樣本數(shù)據(jù)去推斷是否拒絕這一假設(shè),稱為假設(shè)檢驗(hypothesistesting)。
樣本1同一總體差異抽樣誤差引起
樣本2總體甲樣本1
差異本質(zhì)不同引起(本質(zhì)不同)總體乙樣本2假設(shè)檢驗的原因P>0.05無統(tǒng)計學(xué)意義P<0.05有統(tǒng)計學(xué)意義不能用抽樣誤差來解釋1.反證法:當(dāng)一件事情的發(fā)生只有兩種可能A和B,為了肯定其中的一種情況A,但又不能直接證實A,這時否定另一種可能B,則間接的肯定了A。反證法原理:
某事(結(jié)果)假設(shè)檢驗的原理A(不能直接證明)B(容易證明)假設(shè)檢驗的原理2.概率論(小概率):如果一件事情發(fā)生的概率很小,那么在進(jìn)行一次試驗時,我們說這個事件是“不會發(fā)生的”。從一般的常識可知,這句話在大多數(shù)情況下是正確的,但是它一定有犯錯誤的時候,因為概率再小也是有可能發(fā)生的。小概率事件原理:
某事(結(jié)果)A(絕大多數(shù)情況下發(fā)生)B(一般情況下不發(fā)生)(1)建立檢驗假設(shè),確定檢驗水準(zhǔn)
H0(無效假設(shè)nullhypothesis):μ1=μ2即兩總體均數(shù)相等
H1(備擇假設(shè)alternativehypothesis)
:μ1≠
μ2即兩總體均數(shù)不等(單、雙側(cè)檢驗?)檢驗水準(zhǔn)
=?(常取0.05或0.01)2、假設(shè)檢驗的步驟單、雙側(cè)檢驗備擇假設(shè)中雙側(cè)檢驗:
μ
≠μ0(即μ>μ0
,或μ<μ0)單側(cè)檢驗:
(1)μ>μ0
(根據(jù)專業(yè)角度μ不可能小于μ0) (2)μ<μ0(根據(jù)專業(yè)角度μ不可能大于μ0
)注:一般情況下均采用雙側(cè)檢驗。(2)計算統(tǒng)計量
根據(jù)資料類型與分析目的選擇適當(dāng)?shù)墓接嬎愠鼋y(tǒng)計量,比如計算出u值或t值。注意:在檢驗假設(shè)成立的情況下,才會出現(xiàn)的分布類型或公式。(3)確定概率值(P),作出推斷結(jié)論將計算得到的u值或t值與查附表得到u
或t
,ν,比較,得到P(犯假陽性錯誤的概率)值的大小。根據(jù)u分布和t分布我們知道,如果|u|≥u
或|t|≥
u
則P≤
;如果|u|<u
或|t|<u
則P>
。作出推斷結(jié)論
如果P>
,認(rèn)為在檢驗假設(shè)H0成立的條件下,得到等于或大于現(xiàn)有統(tǒng)計量u值或t值的可能性大于
,不屬于小概率事件,則不拒絕H0,差別無統(tǒng)計學(xué)意義,結(jié)論是不認(rèn)為兩總體均數(shù)不相等。
如果P≤
,我們認(rèn)為在檢驗假設(shè)H0成立的條件下,得到等于或大于現(xiàn)有統(tǒng)計量u值或t值的可能性小于
,可判斷為小概率事件,則拒絕H0,接受H1,差別有統(tǒng)計意義,結(jié)論是兩總體均數(shù)不相等,或者某一總體均數(shù)大于(或小于)另一總體均數(shù)。結(jié)果不拒絕檢驗假設(shè)拒絕檢驗假設(shè)正確理解結(jié)論的概率性(都隱含著犯錯誤的可能性)。假設(shè)有一前提條件H0:μ
=μ0成立P
>
α
對立條件H1:μ
μ0
假設(shè)檢驗方法不拒絕步驟總結(jié):假設(shè)有一前提條件H0:μ
=μ0成立
P≤α
對立條件H1:μ
μ0
假設(shè)檢驗方法拒絕同時接受假設(shè)檢驗在兩種假設(shè)條件下進(jìn)行:總體分布已知—參數(shù)檢驗總體分布未知—非參數(shù)檢驗49兩類錯誤50I型錯誤和II型錯誤
假設(shè)檢驗是利用小概率反證法思想,從問題的對立面(H0)出發(fā)間接判斷要解決的問題(H1)是否成立,然后在假定H0成立的條件下計算檢驗統(tǒng)計量,最后根據(jù)P值判斷結(jié)果,此推斷結(jié)論具有概率性,因而無論拒絕還是不拒絕H0,都可能犯錯誤。51
I型錯誤:“實際無差別,但下了有差別的結(jié)論”,假陽性錯誤。犯這種錯誤的概率是
(其值等于檢驗水準(zhǔn))
II型錯誤:“實際有差別,但下了不拒絕H0的結(jié)論”,假陰性錯誤。犯這種錯誤的概率是
(其值未知)
。
52表2可能發(fā)生的兩類錯誤531-
:檢驗效能(power):當(dāng)兩總體確有差別,按檢驗水準(zhǔn)
所能發(fā)現(xiàn)這種差別的能力。54圖3I型錯誤與II型錯誤示意圖(以單側(cè)u檢驗為例)
55減少I型錯誤的主要方法:假設(shè)檢驗時設(shè)定
值。減少II型錯誤的主要方法:提高檢驗效能。提高檢驗效能的最有效方法:增加樣本量。如何選擇合適的樣本量:實驗設(shè)計。ab減少(增加)I型錯誤,將會增加(減少)II型錯誤增大n
同時降低a與ba與b間的關(guān)系57
假設(shè)檢驗的統(tǒng)計意義與實際意義581.要有嚴(yán)密的研究設(shè)計,尤其是下因果結(jié)論。2.不同的資料應(yīng)選用不同檢驗方法。3.正確理解“統(tǒng)計學(xué)意義”一詞的含義。
594.結(jié)論不能絕對化,提倡使用精確P值。
5.注意統(tǒng)計P值大小與醫(yī)學(xué)/臨床/生物學(xué)差異大小的區(qū)別
6.可信區(qū)間與假設(shè)檢驗各自不同的作用,要結(jié)合使用。
60可信區(qū)間在統(tǒng)計推斷上提供的信息
61
一方面,可信區(qū)間亦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年離異財產(chǎn)分割與子女撫養(yǎng)協(xié)議
- 2025年美食節(jié)活動餐飲贊助合作協(xié)議3篇
- 2024年預(yù)售商品房合同
- 專業(yè)會議服務(wù)協(xié)議模板細(xì)則版
- 2024年物流服務(wù)合同標(biāo)的及權(quán)利義務(wù)
- 鄭州信息工程職業(yè)學(xué)院《果樹學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 村集體財務(wù)知識培訓(xùn)課件
- 2025年度美容SPA行業(yè)資源整合與推廣合同3篇
- 專業(yè)勞務(wù)中介合同模板2024年適用版B版
- 醫(yī)療保健話務(wù)員總結(jié)
- 2024年《工會法》知識競賽題庫及答案
- 《中國血脂管理指南》考試復(fù)習(xí)題庫(含答案)
- 人教版道德與法治八年級上冊2.1網(wǎng)絡(luò)改變世界課件
- 外研版小學(xué)英語(三起點(diǎn))六年級上冊期末測試題及答案(共3套)
- 中醫(yī)診療規(guī)范
- 工業(yè)互聯(lián)網(wǎng)平臺 安全生產(chǎn)數(shù)字化管理 第2部分:石化化工行業(yè) 編制說明
- 第14課《葉圣陶先生二三事》導(dǎo)學(xué)案 統(tǒng)編版語文七年級下冊
- 成人手術(shù)后疼痛評估與護(hù)理-中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)2023 2
- DB15-T 3585-2024 高標(biāo)準(zhǔn)農(nóng)田施工質(zhì)量評定規(guī)程
- 北師大版八年級上冊數(shù)學(xué)期中綜合測試卷(含答案解析)
- 天津濱海新區(qū)2025屆數(shù)學(xué)七年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
評論
0/150
提交評論