福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題含解析_第1頁
福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題含解析_第2頁
福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題含解析_第3頁
福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題含解析_第4頁
福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省仙游金石中學2024屆高二上數(shù)學期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種2.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.253.已知的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為,則()A.4 B.5C.6 D.74.若方程表示雙曲線,則此雙曲線的虛軸長等于()A. B.C. D.5.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.486.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.87.在正方體中,AC與BD的交點為M.設則下列向量與相等的向量是()A. B.C. D.8.已知點,點關于原點對稱點為,則()A. B.C. D.9.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)10.已知銳角的內角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.11.已知集合,則()A. B.C. D.12.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________14.若橢圓的長軸是短軸的2倍,且經過點,則橢圓的離心率為________.15.設拋物線的準線方程為__________.16.已知向量,,若向量與向量平行,則實數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和18.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標準方程.19.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,20.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達式;(2)用求導的方法證明.21.(12分)已知橢圓的離心率為,短軸長為(1)求橢圓的標準方程;(2)已知,A,B分別為橢圓的左、右頂點,過點A作斜率為的直線交橢圓于另一點E,連接EP并延長交橢圓于另一點F,記直線BF的斜率為.若,求直線EF的方程22.(10分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準線、對稱軸、變量x的范圍;(2)以坐標原點O為頂點,作拋物線的內接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計算作答.【詳解】計算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計數(shù)原理得(種),所以不同的涂法有12種.故選:C2、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A3、C【解析】利用賦值法確定展開式中各項系數(shù)的和以及二項式系數(shù)的和,利用比值為,列出關于的方程,解方程.【詳解】二項式的各項系數(shù)的和為,二項式的各項二項式系數(shù)的和為,因為各項系數(shù)的和與其各項二項式系數(shù)的和之比為,所以,.故選:C.4、B【解析】根據(jù)雙曲線標準方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長為,故選:B.5、D【解析】設等比數(shù)列的首項為,公比,根據(jù)題意,由求解.【詳解】設等比數(shù)列的首項為,公比,由題意得:,即,解得,所以,故選:D6、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B7、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.8、C【解析】根據(jù)空間兩點間距離公式,結合對稱性進行求解即可.【詳解】因為點關于原點的對稱點為,所以,因此,故選:C9、B【解析】應用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設,,當且僅當時等號成立,∴要使恒成立,只需,故,∴.故選:B.10、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C11、D【解析】由集合的關系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎題.12、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.14、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經過點,當焦點在軸時,可知,,所以,所以,當焦點在軸時,同理可得.故答案為:15、【解析】由題意結合拋物線的標準方程確定其準線方程即可.【詳解】由拋物線方程可得,則,故準線方程為.故答案為【點睛】本題主要考查由拋物線方程確定其準線方法,屬于基礎題.16、2【解析】先求出的坐標,進而根據(jù)空間向量平行的坐標運算求得答案.【詳解】由題意,,因為,所以存在實數(shù)使得.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用求得遞推關系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設數(shù)列的公差為,小問2詳解】由18、(1),(2)【解析】(1)根據(jù)已知條件建立關于a、b、c的方程組可解;(2)巧設與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯(lián)立上述方程,解得,,即,.【小問2詳解】設所求雙曲線的方程為,由雙曲線經過點,得,即.所以雙曲線的方程為,其標準方程為.19、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結合關系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設過的直線為,聯(lián)立橢圓方程,令化簡得關于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設,設過點的直線為,聯(lián)立得,令得,化簡得,設,則,又,故,即.綜上所述,.20、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導數(shù)判斷出在上單調遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調遞增,于是.21、(1)(2)【解析】(1)由離心率得關系,短軸求出,結合關系式解出,可得橢圓的標準方程;(2)設,,過EF的方程為,聯(lián)立直線與橢圓方程得韋達定理,結合斜率定義和化簡得,由在橢圓上代換得,聯(lián)立韋達定理可求,進而得解;【小問1詳解】由題意可得,,,又,解得所以橢圓的標準方程為;【小問2詳解】由(1)得,,顯然直線EF的斜率存在且不為0,設,,則,都不為和0設直線EF的方程為,由消去y得,顯然,則,因為,所以,等式兩邊平方得①又因為,在橢圓上,所以,②將②代入①可得,即,所以,即,解得或(舍去,此時)所以直線EF的方程為22、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質易得結果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點、焦點、準線、對稱軸、變量x的范圍分別為(0,0),(2,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論