安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省黃山市八校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或2.已知拋物線的焦點為F,且點F與圓上點的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.3.方程化簡的結(jié)果是()A. B.C. D.4.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.5.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.326.一個袋中裝有大小和質(zhì)地相同的5個球,其中有2個紅色球,3個綠色球,從袋中不放回地依次隨機(jī)摸出2個球,下列結(jié)論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是7.已知實數(shù),滿足,則的最小值是()A. B.C. D.8.的展開式中,常數(shù)項為()A. B.C. D.9.等軸雙曲線漸近線是()A. B.C. D.10.設(shè)數(shù)列的前項和為,且,則()A. B.C. D.11.若,則的最小值為()A.1 B.2C.3 D.412.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的離心率是______14.已知等差數(shù)列的公差,等比數(shù)列的公比q為正整數(shù),若,,且是正整數(shù),則______15.拋物線的聚焦特點:從拋物線的焦點發(fā)出的光經(jīng)過拋物線反射后,光線都平行于拋物線的對稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對稱軸的光線射向拋物線后的反射光線都會匯聚到拋物線的焦點處.已知拋物線,一條平行于拋物線對稱軸的光線從點向左發(fā)出,先經(jīng)拋物線反射,再經(jīng)直線反射后,恰好經(jīng)過點,則該拋物線的標(biāo)準(zhǔn)方程為___________.16.如圖莖葉圖記錄了A、兩名營業(yè)員五天的銷售量,若A的銷售量的平均數(shù)比的銷售量的平均數(shù)多1,則A營業(yè)員銷售量的方差為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知點、,點M滿足,記點M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點,點P為C上一個動點,求的最小值18.(12分)中,角A,B,C所對的邊分別為.已知.(1)求的值;(2)求的面積.19.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若動點在橢圓上,且在第一象限內(nèi),點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經(jīng)過定點,求出該定點的坐標(biāo);若不經(jīng)過定點,請說明理由.20.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.21.(12分)在等差數(shù)列中,已知公差,前項和(其中)(1)求;(2)求和:22.(10分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當(dāng)已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時,分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當(dāng)直線在直線位置時,直線與曲線剛好有兩個交點,此時,當(dāng)直線在直線位置時,直線與曲線只有一個公共點,此時,則當(dāng)時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D2、D【解析】先求得拋物線的焦點坐標(biāo),再根據(jù)點F與圓上點的距離的最大值為6求解.【詳解】因為拋物線的焦點為F,且點F與圓上點的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D3、D【解析】由方程的幾何意義得到是橢圓,進(jìn)而得到焦點和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點、的距離的和是常數(shù)的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D4、C【解析】由空間向量共面定理可得點四點共面,從而將求的最小值轉(zhuǎn)化為求點到平面的距離,再根據(jù)等體積法計算.【詳解】因為,由空間向量的共面定理可知,點四點共面,即點在平面上,所以的最小值為點到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點睛】共面定理的應(yīng)用:設(shè)是不共面的四點,則對空間任意一點,都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點共面.5、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C6、C【解析】對選項A,直接求出第一次摸球且摸到綠球的概率;對選項B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對選項C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對選項D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對選項A,第一次摸到綠球的概率為:,故錯誤;對選項B,第二次摸到綠球的概率為:,故錯誤;對選項C,兩次都摸到綠球的概率為:,故正確;對選項D,兩次都摸到紅球的概率為:,故錯誤故選:C7、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A8、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.9、A【解析】對等軸雙曲線的焦點的位置進(jìn)行分類討論,可得出等軸雙曲線的漸近線方程.【詳解】因為,若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為;若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為.綜上所述,等軸雙曲線的漸近線方程為.故選:A.10、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時,.當(dāng)時,.故選:C.11、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時,取等號.即所求最小值.故選:D12、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.14、【解析】由已知等差、等比數(shù)列以及,,是正整數(shù),可得,結(jié)合q為正整數(shù),進(jìn)而求.【詳解】由,,令,其中m為正整數(shù),有,又為正整數(shù),所以當(dāng)時,解得,當(dāng)時,解得不是正整數(shù),故答案為:15、【解析】根據(jù)拋物線的聚焦特點,經(jīng)過拋物線后經(jīng)過拋物線焦點,再經(jīng)直線反射后經(jīng)過點,則根據(jù)反射特點,列出相關(guān)方程,解出方程即可.【詳解】設(shè)光線與拋物線的交點為,拋物線的焦點為,則可得:拋物線的焦點為:則直線的方程為:設(shè)直線與直線的交點為,則有:解得:則過點且垂直于的直線的方程為:根據(jù)題意可知:點關(guān)于直線的對稱點在直線上設(shè)點,的中點為,則有:直線垂直于,則有:點在直線上,則有:點在直線上,則有:化簡得:又故故答案為:【點睛】直線關(guān)于直線對稱對稱,利用中點坐標(biāo)公式和直線與直線垂直的特點建立方程,根據(jù)題意列出隱含的方程是關(guān)鍵16、44【解析】先根據(jù)題意求出x的值,進(jìn)而利用方差公式求出A營業(yè)員銷售量的方差.【詳解】由A的平均數(shù)比的平均數(shù)多1知,A的總量比的總量多5,所以,A的平均數(shù)為17,方差為.故答案為:44三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設(shè),利用向量坐標(biāo)運算計算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點、為左、右焦點的雙曲線的右支,設(shè)軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設(shè),則,且,圓心,則因為,則當(dāng)時,取最小值23.18、(1);(2).【解析】(1)根據(jù)求出,根據(jù)求出,根據(jù)正弦定理求出;(2)先求出,再利用面積公式即可求出.【詳解】(1)在中,由題意知,又因為,所有,由正弦定理可得.(2)由得,由,得.所以.因此,的面積.【點睛】本題考查正弦定理和三角形面積公式的應(yīng)用,屬于中檔題.19、(1)(2)過定點,【解析】(1)根據(jù)橢圓上的點及離心率求出a,b即可;(2)設(shè)點,設(shè)直線的方程為,聯(lián)立方程,得到根與系數(shù)的關(guān)系,利用條件化簡,結(jié)合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)點,設(shè)直線的方程為.如圖,聯(lián)立,消有:,韋達(dá)定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.20、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導(dǎo)函數(shù)的零點即可.【詳解】(1)證明:當(dāng)時,,則,當(dāng)時,,則,又因為,所以當(dāng)時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因為,所以,①當(dāng)時,恒成立,所以在上單調(diào)遞增,沒有極值點.②當(dāng)時,在區(qū)間上單調(diào)遞增,因為.當(dāng)時,,所以在上單調(diào)遞減,沒有極值點.當(dāng)時,,所以存在,使當(dāng)時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點的問題,需要結(jié)合零點存在定理求解.屬于難題.21、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項公式和前n項和公式即可列式求解;(2)由第(1)問中求解出的的通項公式,要求前12項絕對值的和,可以發(fā)現(xiàn),該數(shù)列前6項為正項,后6項為負(fù)項,因此在算和的時候,后6項和可以取原通項公式的相反數(shù)即可計算,即為,然后再加上前6項和,即為要求的前12項絕對值的和.【小問1詳解】由題意可得,在等差數(shù)列中,已知公差,前項和所以,解之得,所以n=12【小問2詳解】由(1)可知數(shù)列{

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論