浙江省2022-2023學(xué)年高一上學(xué)期11月期中聯(lián)考數(shù)學(xué)試題(含解析)_第1頁
浙江省2022-2023學(xué)年高一上學(xué)期11月期中聯(lián)考數(shù)學(xué)試題(含解析)_第2頁
浙江省2022-2023學(xué)年高一上學(xué)期11月期中聯(lián)考數(shù)學(xué)試題(含解析)_第3頁
浙江省2022-2023學(xué)年高一上學(xué)期11月期中聯(lián)考數(shù)學(xué)試題(含解析)_第4頁
浙江省2022-2023學(xué)年高一上學(xué)期11月期中聯(lián)考數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高一上學(xué)期期中數(shù)學(xué)試題考生須知:1.本卷滿分150分,考試時間120分鐘;2.答題前,在答題卷指定區(qū)域填寫班級?姓名?考場?座位號及準考證號并核對條形碼信息;3.所有答案必須寫在答題卷上,寫在試卷上無效,考試結(jié)束后,只需上交答題卷;4.學(xué)生和家長可關(guān)注“啟望教育”公眾號查詢個人分析報告.一?選擇題(本大題共8題,每小題5分,共40分.每小題列出的四個備選項中只有一個是符合題目要求的,不選?多選?錯選均不得分)1.已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)二次函數(shù)不等式求得SKIPIF1<0,再求得SKIPIF1<0即可.【詳解】由題意,SKIPIF1<0,又SKIPIF1<0故SKIPIF1<0SKIPIF1<0故選:A2.命題“SKIPIF1<0,使得SKIPIF1<0”的否定形式是()A.SKIPIF1<0,使得SKIPIF1<0 B.SKIPIF1<0都有SKIPIF1<0C.SKIPIF1<0,使得SKIPIF1<0 D.SKIPIF1<0,都有SKIPIF1<0【答案】D【解析】【分析】根據(jù)全稱命題的否定是特稱命題,即可求解.【詳解】“SKIPIF1<0,使得SKIPIF1<0”是全稱命題,全稱命題的否定是特稱命題故否定形式是SKIPIF1<0,都有SKIPIF1<0.故選:D3.“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】B【解析】【分析】判斷“SKIPIF1<0”和“SKIPIF1<0”之間的邏輯推理關(guān)系,可得答案.【詳解】由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,推不出SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0一定成立,故“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件,故選:B.4.設(shè)SKIPIF1<0是定義域為SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上單調(diào)遞增,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】結(jié)合函數(shù)的單調(diào)性、奇偶性以及比較大小的知識求得正確答案.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,即SKIPIF1<0.故選:D5.某商場在國慶期間舉辦促銷活動,規(guī)定:顧客購物總金額不超過400元,不享受折扣;若顧客的購物總金額超過400元,則超過400元部分分兩檔享受折扣優(yōu)惠,折扣率如下表所示:可享受折扣優(yōu)惠的金額折扣率不超過400元部分SKIPIF1<0超過400元部分SKIPIF1<0若某顧客獲得65元折扣優(yōu)惠,則此顧客實際所付金額為()A.935元 B.1000元 C.1035元 D.1100元【答案】C【解析】【分析】判斷該顧客購物總金額的范圍,根據(jù)題意列方程求得總金額,減去享受的優(yōu)惠金額,即為此顧客實際所付金額,即得答案.【詳解】當(dāng)顧客的購物總金額超過400元不超過800元時,享受折扣優(yōu)惠的金額做多為SKIPIF1<0元,故該顧客購物總金額一定超過了800元,設(shè)為x元SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(元),則此顧客實際所付金額為SKIPIF1<0元,故選:C.6.若SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0的部分圖像不可能是()A. B.C D.【答案】C【解析】【分析】根據(jù)函數(shù)的奇偶性,指數(shù)函數(shù)及冪函數(shù)的圖象及性質(zhì)結(jié)合條件分析即得.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以函數(shù)為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0函數(shù)定義域為SKIPIF1<0且單調(diào)遞增,故A有可能;當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0函數(shù)定義域為SKIPIF1<0且單調(diào)遞增,故B有可能;當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0函數(shù)定義域為SKIPIF1<0且在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,故D有可能;對于C,由題可知關(guān)于SKIPIF1<0軸對稱的函數(shù)為SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,此時SKIPIF1<0函數(shù)定義域為SKIPIF1<0且單調(diào)遞增,故C不可能.故選:C.7.已知函數(shù)SKIPIF1<0的定義域為R,設(shè)SKIPIF1<0且SKIPIF1<0是奇函數(shù),若函數(shù)f(x)與g(x)的圖像的交點坐標分別為SKIPIF1<0,則SKIPIF1<0=()A.0 B.-8 C.8 D.9【答案】A【解析】【分析】運用函數(shù)圖像的對稱性求解即可.【詳解】令SKIPIF1<0,則有SKIPIF1<0,∴SKIPIF1<0是奇函數(shù),即SKIPIF1<0關(guān)于SKIPIF1<0點對稱;同理SKIPIF1<0也是關(guān)于SKIPIF1<0點對稱;對于交點SKIPIF1<0不妨看作是根據(jù)SKIPIF1<0從小到大排列的,則這9個交點必然是關(guān)于SKIPIF1<0點對稱的,即有:SKIPIF1<0,SKIPIF1<0;故選:A.8.已知SKIPIF1<0、SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,若對于任意的非零實數(shù)SKIPIF1<0,存在唯一的實數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)題意可得出SKIPIF1<0且SKIPIF1<0,將所求代數(shù)式變形為SKIPIF1<0,利用基本不等式可求得所求代數(shù)式的最小值.【詳解】因為SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為對于任意的非零實數(shù)SKIPIF1<0,存在唯一的實數(shù)SKIPIF1<0,滿足SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,可得SKIPIF1<0,且有SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,等號成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:A.二?選擇題(本大題共4題,每小題5分,共20分.在每小題列出的四個選項中,有多項符合題目要求.全不選對得5分,部分選對得2分,有選錯的得0分)9.已知a,b為實數(shù),()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【解析】【分析】通過特例可判斷A,D,通過不等式的性質(zhì)可判斷BC.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,即A錯誤;SKIPIF1<0,即D錯誤;因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0成立,即B正確;因為SKIPIF1<0,根據(jù)不等式的性質(zhì)可得SKIPIF1<0,即C正確;故選:BC.10.已知函數(shù)SKIPIF1<0是定義域為R的奇函數(shù),且SKIPIF1<0,則()A.n=0 B.函數(shù)SKIPIF1<0SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0的解集是SKIPIF1<0 D.SKIPIF1<0的最大值是SKIPIF1<0【答案】ABC【解析】【分析】函數(shù)是奇函數(shù)且SKIPIF1<0,求出函數(shù)解析式,再討論單調(diào)區(qū)間、最大值,解不等式.【詳解】函數(shù)是R上的奇函數(shù)且SKIPIF1<0,依題意有SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故A選項正確;任取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴函數(shù)SKIPIF1<0上單調(diào)遞增,B選項正確;SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,C選項正確;SKIPIF1<0,SKIPIF1<0取最大值時SKIPIF1<0,SKIPIF1<0,由基本不等式SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,∴SKIPIF1<0,即當(dāng)SKIPIF1<0時SKIPIF1<0的最大值為SKIPIF1<0,D選項錯誤.故選:ABC11.設(shè)函數(shù)SKIPIF1<0,則()A.存在實數(shù)SKIPIF1<0,使SKIPIF1<0的定義域為RB.函數(shù)SKIPIF1<0一定有最小值C.對任意的負實數(shù)SKIPIF1<0,SKIPIF1<0的值域為SKIPIF1<0D.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上遞增,則SKIPIF1<0【答案】ABD【解析】【分析】對于A:當(dāng)SKIPIF1<0時,

SKIPIF1<0的定義域為R,所以A正確;對于B:SKIPIF1<0,所以SKIPIF1<0一定有最小值,所以B正確;對于C:舉例驗證即可;對于D:分兩種情況,根據(jù)單調(diào)性求解,所以D正確;【詳解】對于A:當(dāng)SKIPIF1<0,即SKIPIF1<0時,若SKIPIF1<0,定義域為SKIPIF1<0,當(dāng)SKIPIF1<0時,若SKIPIF1<0定義域為R,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以存在實數(shù)SKIPIF1<0,使SKIPIF1<0的定義域為R,所以A正確;對于B:SKIPIF1<0,所以SKIPIF1<0一定有最小值,所以B正確;對于C:當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的值域為SKIPIF1<0,所以C不正確;對于D:當(dāng)SKIPIF1<0,即SKIPIF1<0時,若SKIPIF1<0,滿足函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上遞增,當(dāng)SKIPIF1<0時,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上遞增,則SKIPIF1<0,解得SKIPIF1<0,綜上SKIPIF1<0,所以D正確;故選:ABD.12.設(shè)函數(shù)SKIPIF1<0若存在SKIPIF1<0,使得SKIPIF1<0,則t的值可能是()A.-7 B.-6 C.-5 D.-4【答案】BCD【解析】【分析】根據(jù)題意可得SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0),結(jié)合對勾函數(shù)的性質(zhì)可得函數(shù)SKIPIF1<0的單調(diào)性,則SKIPIF1<0,進而有SKIPIF1<0,結(jié)合SKIPIF1<0列出不等式組,解之即可.【詳解】由題意得,存在SKIPIF1<0使得SKIPIF1<0成立,令SKIPIF1<0,SKIPIF1<0,因為對勾函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0.故選:BCD.三?填空題(本大題共4題,每小題5分,共20分)13.若SKIPIF1<0,則SKIPIF1<0=___________.【答案】1【解析】【分析】先求出SKIPIF1<0,繼而計算SKIPIF1<0.【詳解】SKIPIF1<0.故答案為:1.14.已知集合A={6,8},B={3,5}.若集合C=SKIPIF1<0,則集合C的子集有___________個.【答案】8【解析】【分析】一個集合中有n個元素,其子集個數(shù)為SKIPIF1<0.【詳解】x可能的結(jié)果有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以集合SKIPIF1<0,因此子集個數(shù)為SKIPIF1<0.故答案為:8.15.函數(shù)SKIPIF1<0的值域為_______.【答案】SKIPIF1<0【解析】【分析】在含有根號的函數(shù)中求值域,運用換元法來求解【詳解】令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0的值域為SKIPIF1<0【點睛】本題主要考查了求函數(shù)的值域,在求值域時的方法較多,當(dāng)含有根號時可以運用換元法來求解,注意換元后的定義域.16.已知函數(shù)SKIPIF1<0,定義SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【解析】【分析】比較SKIPIF1<0與SKIPIF1<0的大小,求得SKIPIF1<0,令SKIPIF1<0,求得SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0即可得出答案.【詳解】SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,單調(diào)遞增,則當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.四?解答題(本大題共6題,共70分.解答應(yīng)寫出文字說明?證明過程或演算步驟)17.計算:(1)SKIPIF1<0(2)已知,SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)用指數(shù)冪的運算性質(zhì)化簡即可.(2)由SKIPIF1<0,求出SKIPIF1<0,將原式化簡代入.【小問1詳解】SKIPIF1<0SKIPIF1<0【小問2詳解】已知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<018.已知集合SKIPIF1<0,SKIPIF1<0.(1)若“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,求實數(shù)SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)首先解一元二次不等式求出集合SKIPIF1<0,依題意可得SKIPIF1<0SKIPIF1<0,即可得到不等式組,解得即可.(2)分SKIPIF1<0和SKIPIF1<0兩種情況討論,分別得到不等式組,解得即可.【小問1詳解】解:由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,因為“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0(等號不同時取得),解得SKIPIF1<0【小問2詳解】解:由題意可得SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,滿足要求;當(dāng)SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0.19.已知函數(shù)SKIPIF1<0.(1)設(shè)函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求SKIPIF1<0的取值范圍:(2)若“SKIPIF1<0,使得SKIPIF1<0成立”為假命題,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)由二次函數(shù)的單調(diào)性可得對稱軸SKIPIF1<0,進而求得a的取值范圍.(2)解指數(shù)不等式,然后分離參數(shù),轉(zhuǎn)化為恒成立問題,根據(jù)單調(diào)性找最小值.【小問1詳解】SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的對稱軸SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0所以,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.【小問2詳解】由題意可得,“SKIPIF1<0,都有SKIPIF1<0成立”為真命題,由指數(shù)函數(shù)的性質(zhì)可知,SKIPIF1<0,即SKIPIF1<0恒成立,分離參數(shù)可得:SKIPIF1<0,故只需求出SKIPIF1<0在SKIPIF1<0上的最小值.由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.SKIPIF1<0,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.20.某企業(yè)為進一步增加市場競爭力,計劃在2022年利用新技術(shù)對原有產(chǎn)品進行二次加工后推廣促銷,已知該產(chǎn)品銷售量SKIPIF1<0(萬件)與推廣促銷費SKIPIF1<0(萬元)之間滿足關(guān)系SKIPIF1<0,加工此產(chǎn)品還需要投入SKIPIF1<0(萬元)(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為SKIPIF1<0元,且全年生產(chǎn)的成品能在當(dāng)年促銷售完.(1)試求出2022年的利潤SKIPIF1<0(萬元)的表達式(用SKIPIF1<0表示)(利潤=銷售額-推廣促銷費-成本);(2)當(dāng)推廣促銷費投入多少萬元時,此產(chǎn)品的利潤最大?最大利潤為多少?【答案】(1)SKIPIF1<0(2)當(dāng)推廣促銷費投入4萬元時利潤最大,最大利潤為28萬.【解析】【分析】(1)直接根據(jù)題意建立數(shù)學(xué)函數(shù)模型即可;(2)結(jié)合基本不等式求解即可.【小問1詳解】解:由題意可得:SKIPIF1<0,其中SKIPIF1<0,整理可得:SKIPIF1<0【小問2詳解】解:由題意可得,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以,當(dāng)推廣促銷費投入4萬元時,最大利潤為28萬.21.設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的奇偶性(寫出結(jié)論,不需要證明);(2)是否存在實數(shù)SKIPIF1<0,使得關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解?若存在,求出實數(shù)SKIPIF1<0的取值范圍:若不存在,請說明理由.【答案】(1)SKIPIF1<0時,SKIPIF1<0為奇函數(shù);SKIPIF1<0時,SKIPIF1<0為非奇非偶函數(shù)(2)存在,SKIPIF1<0【解析】【分析】(1)討論a的取值,根據(jù)奇函數(shù)的定義即可判斷函數(shù)的奇偶性;(2)利用換元法,設(shè)SKIPIF1<0,將關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解轉(zhuǎn)化為SKIPIF1<0的圖象在SKIPIF1<0上只有一個交點,數(shù)形結(jié)合,可得答案案.【小問1詳解】SKIPIF1<0時,SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0為奇函數(shù);SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0為非奇非偶函數(shù).【小問2詳解】假設(shè)存在實數(shù)SKIPIF1<0,使得關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解,即SKIPIF1<0不妨設(shè)SKIPIF1<0,由題意可得,SKIPIF1<0,整理可得:SKIPIF1<0在SKIPIF1<0上有一個根,設(shè)SKIPIF1<0,作出其在SKIPIF1<0內(nèi)的圖象,如下圖所示,若SKIPIF1<0的方程SKIPIF1<0有唯一解,則SKIPIF1<0的圖象在SKIPIF1<0上只有一個交點,則SKIPIF1<0的取值范圍是SKIPIF1<0,故存在SKIPIF1<0,使得關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解.22.設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,判斷SKIPIF1<0在SKIPIF1<0上的單調(diào)性,并用定義法證明;(2)對SKIPIF1<0及SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,證明見解析(2)SKIPIF1<0.【解析】【分析】(1)定義法證明函數(shù)單調(diào)性的步驟為:設(shè)值,作差,變形,定號,寫結(jié)論;要注意變形要變?yōu)榭梢耘袛嗾摰膸讉€因式乘積的形式;(2)令SKIPIF1<0,原問題可轉(zhuǎn)化為對于任意的實數(shù)SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,利用二次函數(shù)的性質(zhì)和分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論