浙江省杭州xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第1頁(yè)
浙江省杭州xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第2頁(yè)
浙江省杭州xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第3頁(yè)
浙江省杭州xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第4頁(yè)
浙江省杭州xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高一上學(xué)期期中數(shù)學(xué)試題一、單項(xiàng)題:本大題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合A={1,3,4,5}B={2,4,6,8}則SKIPIF1<0()A.{1,2,3,4,5,6,7,8} B.{1,2,3,4,6,8}C.{1,2,3,4,5,6,8} D.{4}【答案】C【解析】【分析】根據(jù)并集的知識(shí)求得正確答案.【詳解】根據(jù)并集的知識(shí)可知SKIPIF1<0.故選:C2.設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必條件【答案】B【解析】【分析】分別求出兩個(gè)不等式的解集,結(jié)合充分、必要條件的知識(shí)求得正確答案.【詳解】SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B3.下列函數(shù)中是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】利用函數(shù)奇偶性的定義和單調(diào)性的性質(zhì)分別對(duì)各個(gè)選項(xiàng)分析判斷即可.【詳解】對(duì)于A,SKIPIF1<0為奇函數(shù),在SKIPIF1<0和SKIPIF1<0上為減函數(shù),而在定義域內(nèi)不是減函數(shù),所以A不合題意;對(duì)于B,SKIPIF1<0為奇函數(shù),在定義域SKIPIF1<0上為減函數(shù),所以B符合題意;對(duì)于C,SKIPIF1<0為偶函數(shù),所以C不合題意;對(duì)于D,由于SKIPIF1<0為非奇非偶函數(shù),所以D不合題意,故選:B.4.設(shè)SKIPIF1<0,則a,b,c的大小關(guān)系為()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【答案】D【解析】【分析】結(jié)合指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)確定正確答案.【詳解】SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0,所以SKIPIF1<0.故選:D5.若m+n=1(m>0,n>0),則SKIPIF1<0的最小值為()A.4 B.6 C.9 D.12【答案】A【解析】【分析】根據(jù)已知條件,利用基本不等式即可求解.詳解】因?yàn)閙+n=1(m>0,n>0),則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).故選:A.6.設(shè)x∈R,定義符號(hào)函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0=SKIPIF1<0的圖象大致是A B.C. D.【答案】C【解析】【詳解】函數(shù)f(x)=|x|sgnx=SKIPIF1<0=x,故函數(shù)f(x)=|x|sgnx的圖象為y=x所在的直線,故答案為C.7.設(shè)函函SKIPIF1<0=x2﹣2x+2,若SKIPIF1<0tx對(duì)任意的實(shí)數(shù)xSKIPIF1<01恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】將問(wèn)題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,結(jié)合對(duì)勾函數(shù)的性質(zhì)求出SKIPIF1<0的最小值即可.【詳解】因?yàn)镾KIPIF1<0tx對(duì)任意的實(shí)數(shù)xSKIPIF1<01恒成立,所以x2﹣2x+2SKIPIF1<0tx對(duì)任意的實(shí)數(shù)xSKIPIF1<01恒成立,等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,由對(duì)勾函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0處取最小值為SKIPIF1<0,所以SKIPIF1<0,所以實(shí)數(shù)t的取值范圍是SKIPIF1<0.故選:C.8.已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的單調(diào)函數(shù),若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)為()A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【答案】A【解析】【分析】先根據(jù)SKIPIF1<0單調(diào),結(jié)合已知條件求出SKIPIF1<0的解析式,然后再進(jìn)一步研究函數(shù)SKIPIF1<0的零點(diǎn).【詳解】解:因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的單調(diào)函數(shù),且對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,故可設(shè)存在唯一的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,則設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0再令SKIPIF1<0,SKIPIF1<0,得:SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去).則函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0.故選:A.二、多選題:本大題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)的得5分,選對(duì)但不全的得2分,有選錯(cuò)的或不選的得0分9.下列各組函數(shù)為同一個(gè)函數(shù)的是()A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0SKIPIF1<0【答案】CD【解析】【分析】逐項(xiàng)判斷即可,A項(xiàng)定義域不同;B項(xiàng)定義域不同;CD項(xiàng)化簡(jiǎn)后三要素相同;【詳解】對(duì)于A:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)檫@兩個(gè)函數(shù)的定義域不同,所以這兩個(gè)函數(shù)不是同一函數(shù),故A錯(cuò)誤;對(duì)于B:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)檫@兩個(gè)函數(shù)的定義域不同,所以這兩個(gè)函數(shù)不是同一函數(shù),故B錯(cuò)誤;對(duì)于C:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以這兩個(gè)函數(shù)是同一函數(shù),故C正確;對(duì)于D:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以這兩個(gè)函數(shù)是同一函數(shù),故D正確;故選:CD.10.下列說(shuō)法正確的有()A.命題“SKIPIF1<0,x2+x+1>0”的否定為“SKIPIF1<0”B.函數(shù)f(x)=logax+1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)(1,1)C.已知函數(shù)f(x)=|x|+2,則f(x)的圖象關(guān)于直線x=2對(duì)稱(chēng)D.SKIPIF1<0【答案】AB【解析】【分析】由全稱(chēng)量詞命題的否定可判斷A;利用函數(shù)平移的即可判斷BC;由換底公式可可判斷D【詳解】對(duì)于A選項(xiàng):“?x∈R,x2+x+1>0”的否定為“?x∈R.x2+x+1SKIPIF1<00”,故A正確;對(duì)于B選項(xiàng):由函數(shù)對(duì)數(shù)函數(shù)y=logax(a>0且a≠1)恒過(guò)(1,0),所以f(x)=logax+1恒過(guò)(1,1),故B正確;對(duì)于C選項(xiàng):由函數(shù)y=|x|圖像關(guān)于x=0對(duì)稱(chēng),所以f(x)=|x|+2,關(guān)于x=0對(duì)稱(chēng),故C錯(cuò)誤;對(duì)于D選項(xiàng):由換底公式SKIPIF1<0,故D錯(cuò)誤;故選:AB.11.若SKIPIF1<0,則下列不等式中,恒成立的是()A.SKIPIF1<0 B.a3+b3SKIPIF1<0a2b+b2aC.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】由已知結(jié)合基本不等式及相關(guān)結(jié)論,不等式的性質(zhì)及對(duì)勾函數(shù)單調(diào)性分別檢驗(yàn)各選項(xiàng)即可判斷.【詳解】對(duì)A:當(dāng)a>0,b>0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),A正確;對(duì)B:a3+b3﹣a2b﹣ab2=a2(a﹣b)+b2(b﹣a)=(a﹣b)2(a+b)≥0,故a3+b3≥a2b+b2a,B正確;對(duì)C:SKIPIF1<0,故SKIPIF1<0,C錯(cuò)誤;對(duì)D:令SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,D正確.下證SKIPIF1<0在SKIPIF1<0上單調(diào)遞增:在SKIPIF1<0上任取SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.故選:ABD.12.已知函數(shù)SKIPIF1<0是定義在R上的函數(shù),其中f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)+g(x)=ax2﹣x,若對(duì)于任意SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)a可以為()A3 B.2 C.1 D.0【答案】AB【解析】【分析】由已知結(jié)合函數(shù)的奇偶性可求SKIPIF1<0,由函數(shù)的單調(diào)性定義分析可得,令SKIPIF1<0,判斷出SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合二次函數(shù)的性質(zhì)分析可得a的取值范圍.【詳解】根據(jù)題意,f(x)+g(x)=ax2﹣x,則f(﹣x)+g(﹣x)=ax2+x,兩式相加可得f(x)+f(﹣x)+g(x)+g(﹣x)=2ax2,又由f(x)是定義在R上的奇函數(shù),g(x)是定義在R上的偶函數(shù),所以2g(x)=2ax2,即g(x)=ax2,若對(duì)于任意SKIPIF1<0,都有SKIPIF1<0,變形可得SKIPIF1<0,令SKIPIF1<0,則h(x)在區(qū)間SKIPIF1<0上單調(diào)遞增,若a=0,則h(x)=﹣4x在SKIPIF1<0上單調(diào)遞減,不滿足題意;若SKIPIF1<0,則h(x)=ax2﹣4x是對(duì)稱(chēng)軸為SKIPIF1<0的二次函數(shù),若h(x)在區(qū)間SKIPIF1<0上單調(diào)遞增,只需SKIPIF1<0,解得SKIPIF1<0,所以a的取值范圍為SKIPIF1<0,則a可以取值3,2.故選:AB三、填空題:本大題共4小題,每小題5分,共20分.13.函數(shù)SKIPIF1<0定義域?yàn)開(kāi)________.【答案】SKIPIF1<0【解析】【分析】根據(jù)函數(shù)定義域的求法求得正確答案.【詳解】依題意SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<014.已知函數(shù)SKIPIF1<0,則SKIPIF1<0_____.【答案】4【解析】【分析】根據(jù)分段函數(shù)解析式求得正確答案.【詳解】由于SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<015.若冪函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則實(shí)數(shù)SKIPIF1<0_____.【答案】4【解析】【分析】結(jié)合冪函數(shù)的定義以及單調(diào)性求得SKIPIF1<0的值.【詳解】SKIPIF1<0是冪函數(shù),所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0上遞增,符合題意.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0上遞減,不符合題意.綜上所述,SKIPIF1<0的值為SKIPIF1<0.故答案為:SKIPIF1<016.在函數(shù)y=3x圖象上有A(x1,t),B(x2,t+3),C(x3,t+6)(其中tSKIPIF1<03)三點(diǎn),則△ABC的面積S(t)的最大值為_(kāi)_______.【答案】SKIPIF1<0.【解析】【分析】先利用對(duì)數(shù)式,求出x1,x2,x3,然后即可將△ABC的面積表示成SKIPIF1<0的形式,代入x1,x2,x3,求其最大值即可.【詳解】根據(jù)題意,函數(shù)y=3x圖象上有A(x1,t),B(x2,t+3),C(x3,t+6)(其中tSKIPIF1<03)三點(diǎn),所以SKIPIF1<0,即x1=log3t,x2=log3(t+3),x3=log3(t+6),SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0,∵tSKIPIF1<03,∴SKIPIF1<0單調(diào)遞減,∴t=3時(shí),SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.17.已知集合SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值集合.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)根據(jù)交集的知識(shí)求得正確答案.(2)根據(jù)SKIPIF1<0對(duì)SKIPIF1<0進(jìn)行分類(lèi)討論,從而求得SKIPIF1<0的取值范圍.【小問(wèn)1詳解】依題意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.【小問(wèn)2詳解】由SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,符合題意.若SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0.綜上所述,實(shí)數(shù)SKIPIF1<0的取值集合為SKIPIF1<0.18.計(jì)算下列各式的值.(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)9【解析】分析】(1)利用指數(shù)運(yùn)算公式和對(duì)數(shù)運(yùn)算公式,即可解出;(2)利用對(duì)數(shù)運(yùn)算公式,即可解出.【小問(wèn)1詳解】原式SKIPIF1<0;【小問(wèn)2詳解】原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.19.已知函數(shù)SKIPIF1<0是定義在R上的增函數(shù),并且滿足SKIPIF1<0.(1)求SKIPIF1<0的值;(2)判斷函數(shù)SKIPIF1<0的奇偶性;(3)若SKIPIF1<0,求x的取值范圍.【答案】(1)0;(2)奇函數(shù);(3)SKIPIF1<0.【解析】【分析】(1)令x=y(tǒng)=0,即可得答案;(2)令y=-x,結(jié)合(1)的結(jié)論即可判斷;(3)由題意可得SKIPIF1<0,則原不等式等價(jià)于SKIPIF1<0,由SKIPIF1<0是定義在R上的增函數(shù)求解即可.【小問(wèn)1詳解】令x=y(tǒng)=0,得SKIPIF1<0,解得SKIPIF1<0.【小問(wèn)2詳解】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镽,令y=-x,則有SKIPIF1<0,即SKIPIF1<0,∴函數(shù)SKIPIF1<0為奇函數(shù),∴SKIPIF1<0為奇函數(shù);【小問(wèn)3詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,即由SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0為增函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,故x的取值范圍為SKIPIF1<0.20.近年來(lái),人們對(duì)能源危機(jī)、氣候危機(jī)有了更加清醒的認(rèn)識(shí),各國(guó)對(duì)新型節(jié)能環(huán)保產(chǎn)品的需求急劇擴(kuò)大,同時(shí),對(duì)新型節(jié)能環(huán)保產(chǎn)品的研發(fā)投入產(chǎn)量增加.杭州某企業(yè)為響應(yīng)國(guó)家號(hào)召,研發(fā)出一款新型節(jié)能環(huán)保產(chǎn)品,計(jì)劃生產(chǎn)投入市場(chǎng).已知該產(chǎn)品的固定研發(fā)成本為180萬(wàn)元,此外,每生產(chǎn)一萬(wàn)臺(tái)該產(chǎn)品需另投入450萬(wàn)元.設(shè)該企業(yè)一年內(nèi)生產(chǎn)該產(chǎn)品x(0<x≤50)萬(wàn)臺(tái)且能全部售完,根據(jù)市場(chǎng)調(diào)研,該產(chǎn)品投入市場(chǎng)的數(shù)量越多,每臺(tái)產(chǎn)品的售價(jià)將適當(dāng)降低.已知每萬(wàn)臺(tái)產(chǎn)品的銷(xiāo)售收入為SKIPIF1<0萬(wàn)元,滿足:SKIPIF1<0.(1)寫(xiě)出年利潤(rùn)SKIPIF1<0(單位:萬(wàn)元)關(guān)于年產(chǎn)量x(單位:萬(wàn)臺(tái))的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售收入﹣固定研發(fā)成本﹣產(chǎn)品生產(chǎn)成本)(2)當(dāng)年產(chǎn)量為多少萬(wàn)臺(tái)時(shí),該企業(yè)的獲利最大?此時(shí)的最大利潤(rùn)為多少?【答案】(1)SKIPIF1<0;(2)當(dāng)年產(chǎn)量為30萬(wàn)臺(tái)時(shí),該企業(yè)的獲利最大,且此時(shí)的最大利潤(rùn)為2270萬(wàn)元.【解析】【分析】(1)由已知條件,根據(jù)利潤(rùn)=銷(xiāo)售收入﹣固定研發(fā)成本﹣產(chǎn)品生產(chǎn)成本即可建立年利潤(rùn)SKIPIF1<0(單位:萬(wàn)元)關(guān)于年產(chǎn)量x(單位:萬(wàn)臺(tái))的函數(shù)關(guān)系式;(2)根據(jù)(1)所得分段函數(shù)SKIPIF1<0,分別求出各段的最大值,比較大小即可得答案.【小問(wèn)1詳解】當(dāng)0<x≤20時(shí),SKIPIF1<0=xSKIPIF1<0﹣(180+450x)=610x﹣2x2﹣180﹣450x=﹣2x2+160x﹣180,當(dāng)20<x≤50時(shí),SKIPIF1<0所以,SKIPIF1<0.【小問(wèn)2詳解】當(dāng)0<x≤20時(shí),SKIPIF1<0=﹣2x2+160x﹣180=﹣2(x﹣40)2+3020,則函數(shù)SKIPIF1<0在(0,20]上單調(diào)遞增,故當(dāng)x=20時(shí),SKIPIF1<0取得最大值,且最大值為2220;當(dāng)20<x≤50時(shí),SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即x=30(負(fù)值舍去)時(shí)等號(hào)成立,此時(shí)SKIPIF1<0取得最大值,且最大值為2270,因?yàn)?270>2220,所以,當(dāng)年產(chǎn)量為30萬(wàn)臺(tái)時(shí),該企業(yè)的獲利最大,且此時(shí)的最大利潤(rùn)為2270萬(wàn)元.21.已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求實(shí)數(shù)k的值;(2)若對(duì)任意的x2∈SKIPIF1<0,存在x1∈SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)t的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)SKIPIF1<0求解即可;(2)求得SKIPIF1<0和SKIPIF1<0在對(duì)應(yīng)區(qū)間上的最小值,根據(jù)其大小關(guān)系,再解不等式即可.【小問(wèn)1詳解】因?yàn)閤∈R,SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,經(jīng)檢驗(yàn),滿足題意,故SKIPIF1<0.【小問(wèn)2詳解】因?yàn)槿我獾膞2∈SKIPIF1<0,存在x1∈SKIPIF1<0,使SKIPIF1<0成立,所以SKIPIF1<0在[t,+SKIPIF1<0)上的最小值小于或等于SKIPIF1<0在[1,2]的最小值,易知SKIPIF1<0=ex﹣e﹣x在R上為增函數(shù),所以SKIPIF1<0在[t,+SKIPIF1<0)上也為增函數(shù),所以SKIPIF1<0的最小值為f(t)=et﹣e﹣t,令m=|x﹣t|,當(dāng)t≤1時(shí),m=|x﹣t|在x=1處取小值為1﹣t,所以SKIPIF1<0的最小值為e1﹣t,所以et﹣e﹣t≤e1﹣t,即(et)2≤1+e,所以SKIPIF1<0,所以SKIPIF1<0;當(dāng)1<t<2時(shí),m=|x﹣t|在x=t處取小值為0,所以SKIPIF1<0的最小值為e0=1,et﹣e﹣t≤1,即SKIPIF1<0,令k=et,k>0,則k2﹣k﹣1≤0,解得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0<SKIPIF1<0=1,與t>1矛盾,故舍去;當(dāng)t≥2時(shí),m=|x﹣t|在x=2處取小值為t﹣2,所以SKIPIF1<0的最小值為et﹣2,et﹣e﹣t≤et﹣2,即SKIPIF1<0,所以SKIPIF1<0與t≥2矛盾,故舍去.綜上所述,t的范圍為:SKIPIF1<0.下證SKIPIF1<0=ex﹣e﹣x在R上為增函數(shù):在SKIPIF1<0上任取SKIPIF1<0,則SKIPIF1<0,又當(dāng)S

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論