版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
通遼七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(含答案解析)一、解答題1.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.2.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).3.如圖1,已知直線m∥n,AB是一個(gè)平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.4.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請(qǐng)你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)5.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.二、解答題6.如圖,直線,一副三角板(,,)按如圖①放置,其中點(diǎn)在直線上,點(diǎn)均在直線上,且平分.(1)求的度數(shù).(2)如圖②,若將三角形繞點(diǎn)以每秒的速度按逆時(shí)針方向旋轉(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).設(shè)旋轉(zhuǎn)時(shí)間為秒.①在旋轉(zhuǎn)過程中,若邊,求的值;②若在三角形繞點(diǎn)旋轉(zhuǎn)的同時(shí),三角形繞點(diǎn)以每秒的速度按順時(shí)針方向旋轉(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).請(qǐng)直接寫出當(dāng)邊時(shí)的值.7.問題情境(1)如圖1,已知,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得;問題遷移(2)圖2,圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合與相交于點(diǎn),有一動(dòng)點(diǎn)在邊上運(yùn)動(dòng),連接,記.①如圖2,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動(dòng)時(shí),與之間有何數(shù)量關(guān)系?請(qǐng)判斷并說明理由.8.已知:直線∥,A為直線上的一個(gè)定點(diǎn),過點(diǎn)A的直線交于點(diǎn)B,點(diǎn)C在線段BA的延長(zhǎng)線上.D,E為直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)D在點(diǎn)E的左側(cè),連接AD,AE,滿足∠AED=∠DAE.點(diǎn)M在上,且在點(diǎn)B的左側(cè).(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),用等式表示∠EAF與∠ABD之間的數(shù)量關(guān)系,并證明;②當(dāng)點(diǎn)D與點(diǎn)B不重合,且∠ABM+∠EAF=150°時(shí),直接寫出∠EAF的度數(shù).9.已知AB∥CD,點(diǎn)M在直線AB上,點(diǎn)N、Q在直線CD上,點(diǎn)P在直線AB、CD之間,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如圖①,求∠MPQ的度數(shù)(用含α的式子表示);(2)如圖②,過點(diǎn)Q作QE∥PN交PM的延長(zhǎng)線于點(diǎn)E,過E作EF平分∠PEQ交PQ于點(diǎn)F.請(qǐng)你判斷EF與PQ的位置關(guān)系,并說明理由;(3)如圖③,在(2)的條件下,連接EN,若NE平分∠PNQ,請(qǐng)你判斷∠NEF與∠AMP的數(shù)量關(guān)系,并說明理由.10.已知,交AC于點(diǎn)E,交AB于點(diǎn)F.(1)如圖1,若點(diǎn)D在邊BC上,①補(bǔ)全圖形;②求證:.(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.①若點(diǎn)G是線段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點(diǎn)G是線段EC上的一點(diǎn),請(qǐng)你直接寫出,,之間的數(shù)量關(guān)系.三、解答題11.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說明理由.12.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點(diǎn)F在DA的延長(zhǎng)線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請(qǐng)說明理由.13.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長(zhǎng)線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.14.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.15.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).【參考答案】一、解答題1.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).2.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長(zhǎng)DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長(zhǎng)DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點(diǎn)E作,延長(zhǎng)DC至Q,過點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.3.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.4.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過拐點(diǎn)作平行線.5.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.二、解答題6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問題.②分兩種情形:如圖③中,當(dāng)解析:(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問題.②分兩種情形:如圖③中,當(dāng)BG∥HK時(shí),延長(zhǎng)KH交MN于R.根據(jù)∠GBN=∠KRN構(gòu)建方程即可解決問題.如圖③-1中,當(dāng)BG∥HK時(shí),延長(zhǎng)HK交MN于R.根據(jù)∠GBN+∠KRM=180°構(gòu)建方程即可解決問題.【詳解】解:(1)如圖①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如圖②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋轉(zhuǎn)過程中,若邊BG∥CD,t的值為6s.②如圖③中,當(dāng)BG∥HK時(shí),延長(zhǎng)KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=s.如圖③-1中,當(dāng)BG∥HK時(shí),延長(zhǎng)HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=s.綜上所述,滿足條件的t的值為s或s.【點(diǎn)睛】本題考查幾何變換綜合題,考查了平行線的性質(zhì),旋轉(zhuǎn)變換,角平分線的定義等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.7.(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;解析:(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;②過P作PQ∥DF,依據(jù)平行線的性質(zhì)可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【詳解】解:(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案為:80;(2)①如圖2,過點(diǎn)P作FD的平行線PQ,則DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠α+∠β;②如圖3,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠β-∠α;理由:過P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.8.(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對(duì)比即可;②分類討論點(diǎn)在的左右兩側(cè)的情況,解析:(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對(duì)比即可;②分類討論點(diǎn)在的左右兩側(cè)的情況,運(yùn)用角的等量代換換算即可.【詳解】.解:(1)設(shè)在上有一點(diǎn)N在點(diǎn)A的右側(cè),如圖所示:∵∴,∴∴(2)①.證明:設(shè),.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),如圖:由①得:又∵∴∵∴當(dāng)點(diǎn)在點(diǎn)左側(cè),在右側(cè)時(shí),如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當(dāng)點(diǎn)和在點(diǎn)左側(cè)時(shí),設(shè)在上有一點(diǎn)在點(diǎn)的右側(cè)如圖:此時(shí)仍有,∴∴綜合所述:或【點(diǎn)睛】本題主要考查了平行線的性質(zhì),角平分線的定義,角的等量代換等,靈活運(yùn)用平行線的性質(zhì)和角平分線定義等量代換出角的關(guān)系是解題的關(guān)鍵.9.(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點(diǎn)P作PR∥AB,可得AB∥CD∥PR,進(jìn)而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=解析:(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點(diǎn)P作PR∥AB,可得AB∥CD∥PR,進(jìn)而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=180°,進(jìn)而可得EF與PQ的位置關(guān)系;(3)結(jié)合(2)和已知條件可得∠QNE=∠QEN,根據(jù)三角形內(nèi)角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,進(jìn)而可得結(jié)論.【詳解】解:(1)如圖①,過點(diǎn)P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如圖②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如圖③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠AMP.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.10.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;(2)①過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.正確的作出輔助線是解題的關(guān)鍵.三、解答題11.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識(shí).12.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點(diǎn)睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.13.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.14.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度兒童游樂場(chǎng)主題設(shè)計(jì)策劃與施工合同4篇
- 2025版孟玲與張偉離婚協(xié)議及子女撫養(yǎng)費(fèi)支付與變更執(zhí)行合同4篇
- 上海住宅裝修服務(wù)合同范本(2024版)版B版
- 2025年度商鋪?zhàn)赓U合同商業(yè)秘密保護(hù)及保密協(xié)議4篇
- 2025版綠化用水合同履約驗(yàn)收與評(píng)價(jià)協(xié)議4篇
- 2025版油罐租賃及遠(yuǎn)程監(jiān)控管理系統(tǒng)合同范本3篇
- 二零二五版駕駛員薪酬激勵(lì)與考核合同3篇
- 二零二五版反擔(dān)保協(xié)議書范本匯編9篇
- 全新多媒體展覽展示合作合同(2025年度)3篇
- 2025年度醫(yī)療器械代理銷售與品牌形象塑造協(xié)議4篇
- 【探跡科技】2024知識(shí)產(chǎn)權(quán)行業(yè)發(fā)展趨勢(shì)報(bào)告-從工業(yè)轟鳴到數(shù)智浪潮知識(shí)產(chǎn)權(quán)成為競(jìng)爭(zhēng)市場(chǎng)的“矛與盾”
- 《中國(guó)政法大學(xué)》課件
- GB/T 35270-2024嬰幼兒背帶(袋)
- 2024-2025學(xué)年高二上學(xué)期期末數(shù)學(xué)試卷(新題型:19題)(基礎(chǔ)篇)(含答案)
- 2022版藝術(shù)新課標(biāo)解讀心得(課件)小學(xué)美術(shù)
- 七上-動(dòng)點(diǎn)、動(dòng)角問題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計(jì)
- 下運(yùn)動(dòng)神經(jīng)元損害綜合征疾病演示課件
- 2023中考地理真題(含解析)
- JJF 1101-2019環(huán)境試驗(yàn)設(shè)備溫度、濕度參數(shù)校準(zhǔn)規(guī)范
評(píng)論
0/150
提交評(píng)論