高中數(shù)學(xué)教學(xué)設(shè)計7篇_第1頁
高中數(shù)學(xué)教學(xué)設(shè)計7篇_第2頁
高中數(shù)學(xué)教學(xué)設(shè)計7篇_第3頁
高中數(shù)學(xué)教學(xué)設(shè)計7篇_第4頁
高中數(shù)學(xué)教學(xué)設(shè)計7篇_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2/2高中數(shù)學(xué)教學(xué)設(shè)計7篇

高中數(shù)學(xué)教學(xué)設(shè)計篇1

教學(xué)目標(biāo):

1、結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;

2、學(xué)會用分層抽樣的方法從總體中抽取樣本;

3、并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系。

教學(xué)重點:

通過實例理解分層抽樣的方法。

教學(xué)難點:

分層抽樣的步驟。

教學(xué)過程:

一、問題情境

1、復(fù)習(xí)簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

2、實例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動

能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性。

由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

所以在各年級抽取的個體數(shù)依次是。即40,32,28。

三、建構(gòu)數(shù)學(xué)

1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用。

2、三種抽樣方法對照表:

類別

共同點

各自特點

相互聯(lián)系

適用范圍

簡單隨機抽樣

抽樣過程中每個個體被抽取的概率是相同的

從總體中逐個抽取

總體中的個體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時采用簡單隨機抽樣

總體中的個體數(shù)較多

分層抽樣

將總體分成幾層,分層進行抽取

各層抽樣時采用簡單隨機抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3、分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分。

(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比。

(3)確定各層應(yīng)抽取的樣本容量。

(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

四、數(shù)學(xué)運用

1、例題。

例1(1)分層抽樣中,在每一層進行抽樣可用_________________。

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格?,F(xiàn)欲從中抽出8人研討進一步改進教和學(xué);

③某班元旦聚會,要產(chǎn)生兩名“幸運者”。

對這三件事,合適的抽樣方法為

A、分層抽樣,分層抽樣,簡單隨機抽樣

B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

C、分層抽樣,簡單隨機抽樣,簡單隨機抽樣

D、系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應(yīng)怎樣進行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5。

然后在各層用簡單隨機抽樣方法抽取。

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5。

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值。

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本。

分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便。

(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

(3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

五、要點歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、分層抽樣的概念與特征;

2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

高中數(shù)學(xué)教學(xué)設(shè)計篇2

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點、難點:求曲線的方程.

教學(xué)用具:計算機.

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實例分析】

例1:設(shè)、兩點的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

解法一:易求線段的中點坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.

設(shè)是線段的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點的坐標(biāo)是方程的解.

(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.

設(shè)點的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);

(2)寫出適合條件的點的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

由距離公式,點適合的條件可表示為

將①式移項后再兩邊平方,得

化簡得

由題意,曲線在軸的上方,所以,雖然原點的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡得

由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教學(xué)設(shè)計篇3

一、指導(dǎo)思想與理論依據(jù)

數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

二、教材分析

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準實驗教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。

三、學(xué)情分析

本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。

四、教學(xué)目標(biāo)

(1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;

(2)能力訓(xùn)練目標(biāo):能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;

(3)創(chuàng)新素質(zhì)目標(biāo):通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;

(4)個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。

五、教學(xué)重點和難點

1、教學(xué)重點

理解并掌握誘導(dǎo)公式。

2、教學(xué)難點

正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。

六、教法學(xué)法以及預(yù)期效果分析

高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。

1、教法

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。

在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。

2、學(xué)法

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。

在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。

3、預(yù)期效果

本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。

七、教學(xué)流程設(shè)計

(一)創(chuàng)設(shè)情景

1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

2、復(fù)習(xí)任意角的三角函數(shù)定義;

3、問題:由,你能否知道sin2100的值嗎?引如新課。

設(shè)計意圖

高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思

自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。

(二)新知探究

1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;

2、讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;

3、Sin2100與sin300之間有什么關(guān)系。

設(shè)計意圖

由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。

(三)問題一般化

探究一

1、探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;

2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標(biāo)關(guān)于原點對稱;

3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系。

設(shè)計意圖

首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二。同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進

高中數(shù)學(xué)教學(xué)設(shè)計篇4

教學(xué)目標(biāo)

1、明確等差數(shù)列的定義。

2、掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養(yǎng)學(xué)生觀察、歸納能力。

教學(xué)重點

1、等差數(shù)列的概念;

2、等差數(shù)列的通項公式

教學(xué)難點

等差數(shù)列“等差”特點的理解、把握和應(yīng)用

教具準備

投影片1張

教學(xué)過程

(I)復(fù)習(xí)回顧

師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數(shù)列共同特點。

對于數(shù)列①(1≤n≤6);(2≤n≤6)

對于數(shù)列②—2n(n≥1)(n≥2)

對于數(shù)列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,—2……

二、等差數(shù)列的通項公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

若將這n—1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項

(2)—401是不是等差數(shù)列—5,—9,—13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得—401=—5—4(n—1)成立解之得n=100,即—401是這個數(shù)列的第100項。

(Ⅲ)課堂練習(xí)

生:(口答)課本P118練習(xí)3

(書面練習(xí))課本P117練習(xí)1

師:組織學(xué)生自評練習(xí)(同桌討論)

(Ⅳ)課時小結(jié)

師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項公式(n≥1)

推導(dǎo)出公式:(V)課后作業(yè)

一、課本P118習(xí)題3。21,2

二、1、預(yù)習(xí)內(nèi)容:課本P116例2P117例4

2、預(yù)習(xí)提綱:

①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

②等差數(shù)列有哪些性質(zhì)?

高中數(shù)學(xué)教學(xué)設(shè)計篇5

教學(xué)目標(biāo)

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

(7)培養(yǎng)學(xué)生用反證法簡單推理的技能,從而發(fā)展學(xué)生的思維能力.

教學(xué)重點和難點

重點:四種命題之間的關(guān)系;難點:反證法的運用.

教學(xué)過程設(shè)計

第一課時:四種命題

一、導(dǎo)入新課

【練習(xí)】1.把下列命題改寫成“若p則q”的形式:

(l)同位角相等,兩直線平行;

(2)正方形的四條邊相等.

2.什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.

如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.

上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當(dāng)成原命題,去求它的逆命題.

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學(xué)生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設(shè)計意圖:

通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

二、新課

【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學(xué)生活動:

口答:若一個四邊形不是正方形,則它的四條邊不相等.

教師活動:

【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.

【板書】原命題:若p則q;

否命題:若┐p則q┐.

【提問】原命題真,否命題一定真嗎?舉例說明?

學(xué)生活動:

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

由此可以得原命題真,它的否命題不一定真.

設(shè)計意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)習(xí)的積極性.

教師活動:

【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學(xué)生活動:

討論后回答

【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

教師活動:

【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

學(xué)生活動:

口答:若一個四邊形的四條邊不相等,則不是正方形.

教師活動:

【講述】一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

原命題是“若p則q”,則逆否命題為“若┐q則┐p.

【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真.

教師活動:

【提問】原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說明?

【總結(jié)】1.原命題為真,它的逆命題不一定為真.

2.原命題為真,它的否命題不一定為真.

3.原命題為真,它的逆否命題一定為真.

設(shè)計意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)的積極性.

教師活動:

三、課堂練習(xí)

1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?

學(xué)生活動:筆答

教師活動:

2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?

學(xué)生活動:討論后回答

設(shè)計意圖:

通過學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

教師活動:

高中數(shù)學(xué)教學(xué)設(shè)計篇6

一、教學(xué)目標(biāo)

1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。

2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力

4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。

二、教學(xué)分析

重點:四種命題;難點:四種命題的關(guān)系

1、本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進一步講解反證法。

2、教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。

三、教學(xué)手段和方法(演示教學(xué)法和循序漸進導(dǎo)入法)

1、以故事形式入題

2、多媒體演示

四、教學(xué)過程

(一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點被緊緊抓住,躍躍欲試!

設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣

(二)復(fù)習(xí)提問:

1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學(xué)生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設(shè)計意圖:通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

(三)新課講解:

1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

(四)組織討論:

讓學(xué)生歸納什么是否命題,什么是逆否命題。

例1及例2

(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真

引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。

(六)課堂小結(jié):

1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

原命題若p則q;

逆命題若q則p;(交換原命題的條件和結(jié)論)

否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)

逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時否定)

2、四種命題的關(guān)系

(1).原命題為真,它的逆命題不一定為真.

(2).原命題為真,它的否命題不一定為真.

(3).原命題為真,它的逆否命題一定為真

(七)回扣引入

分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:

第一句:“該來的沒來”

其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。

第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。

第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。

同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛

五、作業(yè)

1.設(shè)原命題是“若

斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判

2.設(shè)原命題是“當(dāng)時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數(shù)學(xué)教學(xué)設(shè)計篇7

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象。恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。

三、設(shè)計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

五、教學(xué)重點與難點:

教學(xué)重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點:

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計

【設(shè)計思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出——

例題1:(1)已知A(—2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設(shè)計意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。

在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論