版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第08講2.4.2圓的一般方程課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解與掌握?qǐng)A的一般方程的形式與條件。②能準(zhǔn)確的判定圓的存在所滿足的條件。③會(huì)判斷點(diǎn)與圓的位置關(guān)系。④會(huì)用待定系數(shù)法求圓的一般方程,并能解決與圓有關(guān)的位置、距離的綜合問題。通過本節(jié)課的學(xué)習(xí),要求會(huì)判斷圓存在的條件,會(huì)將圓的標(biāo)準(zhǔn)形式與一般形式熟練轉(zhuǎn)化,會(huì)根椐圓存的條件求待定參數(shù)的值,會(huì)用待定系數(shù)法求圓的一般式方程,會(huì)求簡單問題中的軌跡問題,會(huì)解決與圓有關(guān)的位置與距離問題.知識(shí)點(diǎn)01:圓的一般方程對(duì)于方程SKIPIF1<0(SKIPIF1<0為常數(shù)),當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0叫做圓的一般方程.①當(dāng)SKIPIF1<0時(shí),方程表示以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓;②當(dāng)SKIPIF1<0時(shí),方程表示一個(gè)點(diǎn)SKIPIF1<0③當(dāng)SKIPIF1<0時(shí),方程不表示任何圖形說明:圓的一般式方程特點(diǎn):①SKIPIF1<0和SKIPIF1<0前系數(shù)相等(注意相等,不一定要是1)且不為0;②沒有SKIPIF1<0項(xiàng);③SKIPIF1<0.【即學(xué)即練1】(多選)(2022秋·高二課時(shí)練習(xí))(多選題)下列方程不是圓的一般方程的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【詳解】根據(jù)二元二次方程SKIPIF1<0表示圓的條件,對(duì)于A中,方程SKIPIF1<0,可得SKIPIF1<0,所以方程是圓的一般方程;對(duì)于B中,方程SKIPIF1<0,可得SKIPIF1<0,所以方程不是圓的一般方程;對(duì)于C中,方程SKIPIF1<0中,SKIPIF1<0和SKIPIF1<0的系數(shù)不相等,所以方程不是圓的一般方程;對(duì)于D中,方程SKIPIF1<0中,存在SKIPIF1<0項(xiàng),所以方程不是圓的一般方程.故選:BCD.知識(shí)點(diǎn)02:圓的一般方程與圓的標(biāo)準(zhǔn)方程的特點(diǎn)圓的標(biāo)準(zhǔn)方程圓的一般方程方程SKIPIF1<0SKIPIF1<0(SKIPIF1<0)圓心SKIPIF1<0SKIPIF1<0半徑SKIPIF1<0SKIPIF1<0知識(shí)點(diǎn)03:在圓的一般方程中,判斷點(diǎn)與圓的位置關(guān)系已知點(diǎn)SKIPIF1<0和圓的一般式方程SKIPIF1<0:SKIPIF1<0(SKIPIF1<0),則點(diǎn)SKIPIF1<0與圓的位置關(guān)系:①點(diǎn)SKIPIF1<0在SKIPIF1<0外SKIPIF1<0SKIPIF1<0②點(diǎn)SKIPIF1<0在SKIPIF1<0上SKIPIF1<0SKIPIF1<0③點(diǎn)SKIPIF1<0在SKIPIF1<0內(nèi)SKIPIF1<0SKIPIF1<0【即學(xué)即練2】(2022·高二課時(shí)練習(xí))點(diǎn)SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系是_____________.(填“在圓內(nèi)”、“在圓上”、“在圓外”)【答案】在圓內(nèi)【詳解】圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為2點(diǎn)SKIPIF1<0到圓心的距離SKIPIF1<0,因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0在圓內(nèi).故答案為:在圓內(nèi)題型01圓的一般方程的理解【典例1】(2022秋·安徽合肥·高二合肥市第七中學(xué)校聯(lián)考期中)已知方程SKIPIF1<0表示圓,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0表示圓,所以SKIPIF1<0,解得SKIPIF1<0,得SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C【典例2】(2023·高二課時(shí)練習(xí))方程SKIPIF1<0表示圓的充要條件是______.【答案】SKIPIF1<0或SKIPIF1<0【詳解】由題意知:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【變式1】(2022秋·河南許昌·高二禹州市高級(jí)中學(xué)??茧A段練習(xí))方程SKIPIF1<0表示圓,則實(shí)數(shù)SKIPIF1<0的可能取值為(
)A.SKIPIF1<0 B.2 C.0 D.SKIPIF1<0【答案】D【詳解】由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,選項(xiàng)中只有SKIPIF1<0符合題意.故選:D.【變式2】(2023春·上海寶山·高二統(tǒng)考期末)若SKIPIF1<0表示圓,則實(shí)數(shù)SKIPIF1<0的值為______.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0表示圓,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)方程SKIPIF1<0,即SKIPIF1<0,不表示任何圖形,故舍去;當(dāng)SKIPIF1<0時(shí)方程SKIPIF1<0,即SKIPIF1<0,表示以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,符合題意;故答案為:SKIPIF1<0題型02求圓的一般方程【典例1】(2023·高二課時(shí)練習(xí))過三點(diǎn)SKIPIF1<0的圓的一般方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)圓的方程為SKIPIF1<0,將A,B,C三點(diǎn)的坐標(biāo)代入方程,整理可得SKIPIF1<0,解得SKIPIF1<0,故所求的圓的一般方程為SKIPIF1<0,故選:D.【典例2】(2023·新疆克拉瑪依·高二克拉瑪依市高級(jí)中學(xué)??计谥校┣筮m合下列條件的圓的方程:(1)圓心在直線SKIPIF1<0上,且過點(diǎn)SKIPIF1<0的圓;(2)過三點(diǎn)SKIPIF1<0的圓.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,由題知:SKIPIF1<0,解得SKIPIF1<0.所以圓的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)設(shè)圓的一般方程為:SKIPIF1<0,SKIPIF1<0,由題知:SKIPIF1<0,所以圓的方程為:SKIPIF1<0.【典例3】(2023·高二課時(shí)練習(xí))已知圓SKIPIF1<0經(jīng)過兩點(diǎn)SKIPIF1<0,SKIPIF1<0,且圓心在直線SKIPIF1<0上,則圓SKIPIF1<0的一般方程為_______________;若直線SKIPIF1<0的方程SKIPIF1<0(SKIPIF1<0),圓心SKIPIF1<0到直線SKIPIF1<0的距離是1,則SKIPIF1<0的值是______.【答案】SKIPIF1<0SKIPIF1<0【詳解】設(shè)圓C的方程為SKIPIF1<0,由條件,得SKIPIF1<0,解得SKIPIF1<0,因此圓的一般方程為SKIPIF1<0,故圓心SKIPIF1<0,因此圓心到直線l的距離SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【變式1】(2023·江蘇·高二假期作業(yè))過坐標(biāo)原點(diǎn),且在SKIPIF1<0軸和SKIPIF1<0軸上的截距分別為2和3的圓的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)圓的方程為SKIPIF1<0,由題意知,圓過點(diǎn)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以所求圓的方程為SKIPIF1<0.故選:A【變式2】(2023·江蘇蘇州·高二蘇州中學(xué)??计谥校┰谄矫嬷苯亲鴺?biāo)系SKIPIF1<0中,已知SKIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0邊上中線SKIPIF1<0所在直線方程為SKIPIF1<0,SKIPIF1<0邊上的高SKIPIF1<0所在直線方程為SKIPIF1<0,求:(1)頂點(diǎn)SKIPIF1<0的坐標(biāo);(2)SKIPIF1<0外接圓的一般方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0邊上的高SKIPIF1<0所在直線方程為SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0解得:SKIPIF1<0,即SKIPIF1<0.(2)因?yàn)辄c(diǎn)C在直線SKIPIF1<0上,所以可設(shè)SKIPIF1<0,則SKIPIF1<0中點(diǎn)為SKIPIF1<0.把SKIPIF1<0代入直線SKIPIF1<0:SKIPIF1<0,有SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可設(shè)為:SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0外接圓的方程為SKIPIF1<0.題型03圓的一般方程與標(biāo)準(zhǔn)方程轉(zhuǎn)化【典例1】(2023·高二課時(shí)練習(xí))若圓SKIPIF1<0的圓心到直線SKIPIF1<0的距離為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為(
)A.0或2 B.0或-2C.0或SKIPIF1<0 D.-2或2【答案】A【詳解】將圓的方程化為標(biāo)準(zhǔn)方程為:SKIPIF1<0,所以,圓心為SKIPIF1<0,半徑SKIPIF1<0.因?yàn)閳A心SKIPIF1<0到直線的距離為SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:A.【典例2】(2023秋·內(nèi)蒙古巴彥淖爾·高二??计谀┤酎c(diǎn)SKIPIF1<0為圓SKIPIF1<0的弦SKIPIF1<0的中點(diǎn),則弦SKIPIF1<0所在直線的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0為弦MN的中點(diǎn),所以SKIPIF1<0,又AP的斜率SKIPIF1<0,所以直線MN的斜率為2,弦MN所在直線的方程為SKIPIF1<0,即SKIPIF1<0.故選:D【典例3】(2023秋·高二課時(shí)練習(xí))求圓SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱圓方程.【答案】SKIPIF1<0【詳解】由SKIPIF1<0可得SKIPIF1<0,故圓心坐標(biāo)為SKIPIF1<0,半徑為1,設(shè)點(diǎn)P關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,所以圓SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱圓的方程為:SKIPIF1<0.【變式1】(2023春·山東青島·高二校聯(lián)考期中)圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0的最大距離是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】圓SKIPIF1<0化為標(biāo)準(zhǔn)方程得SKIPIF1<0,圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,圓心到直線SKIPIF1<0的距離為SKIPIF1<0所以圓上的點(diǎn)到直線SKIPIF1<0的最大距離為SKIPIF1<0.故選:C.【變式2】(2023春·遼寧朝陽·高二校聯(lián)考期中)已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離的最大值為(
)A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】圓SKIPIF1<0,即圓
SKIPIF1<0圓心為SKIPIF1<0,半徑SKIPIF1<0,得點(diǎn)P到x軸的距離的最大值為SKIPIF1<0.故選:B.題型04點(diǎn)與圓的位置關(guān)系【典例1】(2023·江蘇揚(yáng)州·高二校考階段練習(xí))已知點(diǎn)SKIPIF1<0為圓SKIPIF1<0外一點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因SKIPIF1<0在圓外,則SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0表示圓,則SKIPIF1<0,得SKIPIF1<0.綜上:SKIPIF1<0.故選:D【典例2】(多選)(2023·全國·高三專題練習(xí))已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0的外部,則SKIPIF1<0的取值可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【詳解】由題意可得SKIPIF1<0,解得SKIPIF1<0,故選:AC.【變式1】(2022·高二課時(shí)練習(xí))若點(diǎn)SKIPIF1<0是圓SKIPIF1<0內(nèi)一點(diǎn),則過點(diǎn)SKIPIF1<0的最長的弦所在的直線方程是__________.【答案】SKIPIF1<0【詳解】圓SKIPIF1<0可整理為SKIPIF1<0,所以圓心SKIPIF1<0,SKIPIF1<0,當(dāng)過點(diǎn)SKIPIF1<0的弦經(jīng)過圓心時(shí),弦長最長,所以過點(diǎn)SKIPIF1<0的最長的弦所在的直線方程為SKIPIF1<0,整理得SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023·湖北·高二校聯(lián)考期中)過點(diǎn)SKIPIF1<0可作圓SKIPIF1<0的兩條切線,則實(shí)數(shù)SKIPIF1<0的取值范圍______.【答案】SKIPIF1<0【詳解】因?yàn)榉匠蘏KIPIF1<0表示圓,過點(diǎn)SKIPIF1<0可作圓的兩條切線,則點(diǎn)SKIPIF1<0在圓外,所以SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0.題型05圓過定點(diǎn)問題【典例1】(2023春·上海普陀·高二曹楊二中??茧A段練習(xí))對(duì)任意實(shí)數(shù)SKIPIF1<0,圓SKIPIF1<0恒過定點(diǎn),則其坐標(biāo)為______.【答案】SKIPIF1<0、SKIPIF1<0【詳解】由SKIPIF1<0由得SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故填:SKIPIF1<0、SKIPIF1<0.【典例2】(2023·高二課時(shí)練習(xí))已知方程SKIPIF1<0表示圓,其中SKIPIF1<0,且SKIPIF1<0,則不論SKIPIF1<0取不為1的任何實(shí)數(shù),上述圓恒過的定點(diǎn)的坐標(biāo)是________________.【答案】SKIPIF1<0【詳解】由已知得SKIPIF1<0,它表示過圓SKIPIF1<0與直線SKIPIF1<0交點(diǎn)的圓.由SKIPIF1<0,解得SKIPIF1<0即定點(diǎn)坐標(biāo)為SKIPIF1<0.故答案為SKIPIF1<0【變式1】(2023·上海徐匯·高二上海中學(xué)??计谥校?duì)任意實(shí)數(shù)SKIPIF1<0,圓SKIPIF1<0恒過定點(diǎn),則定點(diǎn)坐標(biāo)為__.【答案】SKIPIF1<0或SKIPIF1<0【詳解】解:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,或SKIPIF1<0,SKIPIF1<0,所以定點(diǎn)的坐標(biāo)是SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【變式2】(2013·遼寧大連·高二統(tǒng)考期中)對(duì)于任意實(shí)數(shù)SKIPIF1<0,曲線SKIPIF1<0恒過定點(diǎn)【答案】SKIPIF1<0【詳解】SKIPIF1<0變形為SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以定點(diǎn)為SKIPIF1<0故答案為:SKIPIF1<0題型06求動(dòng)點(diǎn)的軌跡方程【典例1】(2023春·上海徐匯·高二上海中學(xué)??计谥校c(diǎn)SKIPIF1<0與兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離的比為SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡方程為______.【答案】SKIPIF1<0【詳解】設(shè)點(diǎn)SKIPIF1<0,由題知SKIPIF1<0,兩邊平方化簡得SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0與兩坐標(biāo)軸的交點(diǎn)都在圓SKIPIF1<0上.(1)求圓SKIPIF1<0的方程;(2)已知SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),求線段SKIPIF1<0的中點(diǎn)SKIPIF1<0的軌跡方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,所以圓SKIPIF1<0過SKIPIF1<0.設(shè)圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以圓SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0的坐標(biāo)代入圓SKIPIF1<0的方程得SKIPIF1<0,即SKIPIF1<0.【變式1】(2022秋·高二課時(shí)練習(xí))過點(diǎn)SKIPIF1<0的直線與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,則線段SKIPIF1<0中點(diǎn)SKIPIF1<0的軌跡方程為___________.【答案】SKIPIF1<0【詳解】設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,點(diǎn)B為SKIPIF1<0,由題意,結(jié)合中點(diǎn)坐標(biāo)公式可得SKIPIF1<0,故SKIPIF1<0,化簡得SKIPIF1<0.即線段AB中點(diǎn)P的軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0【變式2】(2023春·福建莆田·高二莆田一中??计谥校┰谄矫嬷苯亲鴺?biāo)系SKIPIF1<0中,SKIPIF1<0點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的運(yùn)動(dòng)軌跡方程為__________;SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0SKIPIF1<0【詳解】設(shè)SKIPIF1<0,由題意可得SKIPIF1<0,整理得SKIPIF1<0,故動(dòng)點(diǎn)SKIPIF1<0的運(yùn)動(dòng)軌跡方程為SKIPIF1<0,如圖所示,點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,點(diǎn)SKIPIF1<0在圓內(nèi)部,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0在線段SKIPIF1<0上時(shí)等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0題型07與圓有關(guān)的最值問題【典例1】(2023秋·北京·高二??计谀┰O(shè)SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0是圓的切線,且SKIPIF1<0,則點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0距離的最小值為(
)A.15 B.6 C.5 D.4【答案】D【詳解】解:由圓的方程SKIPIF1<0,易知圓心SKIPIF1<0,半徑為SKIPIF1<0,因?yàn)镾KIPIF1<0是圓的切線,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以,點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0,點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0距離的最小值為SKIPIF1<0,故選:D.【典例2】(2023·山東煙臺(tái)·統(tǒng)考二模)已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】方程SKIPIF1<0整理得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,即點(diǎn)SKIPIF1<0是圓SKIPIF1<0上一點(diǎn)又點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023秋·江西宜春·高二江西省宜春市第一中學(xué)??计谀┮阎猄KIPIF1<0為圓SKIPIF1<0上任意一點(diǎn).則SKIPIF1<0的最大值為__________【答案】SKIPIF1<0/SKIPIF1<0【詳解】圓SKIPIF1<0即SKIPIF1<0,故圓心SKIPIF1<0,半徑為SKIPIF1<0,又SKIPIF1<0表示圓C上的點(diǎn)M到點(diǎn)SKIPIF1<0的距離,故其最大值為SKIPIF1<0,故答案為:SKIPIF1<0【變式1】(2023春·江蘇南京·高一南京市第二十九中學(xué)??计谥校┰赟KIPIF1<0中,SKIPIF1<0,若SKIPIF1<0的平面內(nèi)有一點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【詳解】由題意,由余弦定理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由已知SKIPIF1<0,即點(diǎn)D是在以AC的中點(diǎn)SKIPIF1<0為圓心,半徑為1的圓周上,SKIPIF1<0,即是求SKIPIF1<0的最小值,其幾何意義為圓周上的一點(diǎn)D到AB的中點(diǎn)SKIPIF1<0的距離的平方的最小值,顯然當(dāng)D,E,O共線時(shí)DE最?。ㄈ缟蠄D),即SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0;故答案為:SKIPIF1<0.【變式2】(2023春·江西·高二校聯(lián)考階段練習(xí))直線SKIPIF1<0始終平分圓SKIPIF1<0的周長,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0/SKIPIF1<0【詳解】解:圓SKIPIF1<0化為標(biāo)準(zhǔn)方程:SKIPIF1<0,圓心為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0始終平分圓SKIPIF1<0的周長,所以直線SKIPIF1<0過圓心SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.故答案為:SKIPIF1<0.題型08關(guān)于點(diǎn)或直線對(duì)稱的圓【典例1】(2023·全國·高三專題練習(xí))與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的圓的標(biāo)準(zhǔn)方程是______.【答案】SKIPIF1<0【詳解】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)坐標(biāo)為SKIPIF1<0則所求圓的標(biāo)準(zhǔn)方程為SKIPIF1<0故答案為:SKIPIF1<0【典例2】(2023秋·重慶沙坪壩·高二重慶市第七中學(xué)校??计谀﹫ASKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱圓的標(biāo)準(zhǔn)方程為__________.【答案】SKIPIF1<0【詳解】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,因此所求圓的圓心SKIPIF1<0,半徑為SKIPIF1<0,所以所求圓的標(biāo)準(zhǔn)方程為:SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023秋·山東棗莊·高二統(tǒng)考期末)如果圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由圓的對(duì)稱性知,圓心在直線SKIPIF1<0上,故有SKIPIF1<0,即SKIPIF1<0.故選:B【變式2】(2023·江蘇·高二假期作業(yè))已知圓SKIPIF1<0與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則圓SKIPIF1<0的方程是__________【答案】SKIPIF1<0【詳解】圓SKIPIF1<0圓心為SKIPIF1<0,半徑等于1,設(shè)圓心SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱點(diǎn)SKIPIF1<0,則有SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)SKIPIF1<0,由于對(duì)稱圓SKIPIF1<0的半徑與圓SKIPIF1<0的半徑相等,故圓SKIPIF1<0的方程為SKIPIF1<0,故答案為SKIPIF1<0.題型09圓的綜合問題【典例1】(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,設(shè)二次函數(shù)SKIPIF1<0的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為SKIPIF1<0.(1)求實(shí)數(shù)b的取值范圍;(2)求圓SKIPIF1<0的方程;(3)請(qǐng)問圓SKIPIF1<0是否經(jīng)過某定點(diǎn)(其坐標(biāo)與SKIPIF1<0無關(guān))?請(qǐng)證明你的結(jié)論.【答案】(1)SKIPIF1<0,且SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0);(3)過定點(diǎn)SKIPIF1<0和SKIPIF1<0.【詳解】(1)令SKIPIF1<0得拋物線與SKIPIF1<0軸交點(diǎn)是SKIPIF1<0;令SKIPIF1<0,由題意SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍SKIPIF1<0,且SKIPIF1<0SKIPIF1<0.(2)設(shè)所求圓的一般方程為SKIPIF1<0,由題意得SKIPIF1<0的圖象與兩坐標(biāo)軸的三個(gè)交點(diǎn)即為圓SKIPIF1<0和坐標(biāo)軸的交點(diǎn),令SKIPIF1<0得,SKIPIF1<0,由題意可得,這與SKIPIF1<0是同一個(gè)方程,故SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0得,SKIPIF1<0,由題意可得,此方程有一個(gè)根為SKIPIF1<0,代入此方程得出SKIPIF1<0,∴圓SKIPIF1<0的方程為SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0).(3)把圓SKIPIF1<0的方程改寫為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故圓SKIPIF1<0過定點(diǎn)SKIPIF1<0和SKIPIF1<0.【典例2】(2023·全國·高三專題練習(xí))已知經(jīng)過圓SKIPIF1<0上點(diǎn)SKIPIF1<0的切線方程是SKIPIF1<0.(1)類比上述性質(zhì),直接寫出經(jīng)過橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程;(2)已知橢圓SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上的動(dòng)點(diǎn),過SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0?SKIPIF1<0①求證:直線SKIPIF1<0過定點(diǎn).②當(dāng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0時(shí),求三角形SKIPIF1<0的外接圓方程.【答案】(1)SKIPIF1<0.(2)①證明見解析;②SKIPIF1<0,SKIPIF1<0.【詳解】(1)類比上述性質(zhì)知:切線方程為SKIPIF1<0.(2)①設(shè)切點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0,
由(1)的結(jié)論的AP直線方程:SKIPIF1<0,BP直線方程:SKIPIF1<0,通過點(diǎn)SKIPIF1<0,∴有SKIPIF1<0,∴A,B滿足方程:SKIPIF1<0,∴直線AB恒過點(diǎn):SKIPIF1<0,即直線AB恒過點(diǎn)SKIPIF1<0.②已知點(diǎn)SKIPIF1<0到直線AB的距離為SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0,直線AB的方程為:SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故點(diǎn)SKIPIF1<0.設(shè)SKIPIF1<0的外接圓方程為:SKIPIF1<0,代入得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的外接圓方程為SKIPIF1<0,即SKIPIF1<0的外接圓方程為:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由對(duì)稱性可知,三角形PAB的外接圓方程為:SKIPIF1<0.【變式1】(2023·全國·高二專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,設(shè)二次函數(shù)SKIPIF1<0的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為SKIPIF1<0.(Ⅰ)若SKIPIF1<0,求圓SKIPIF1<0的方程;(Ⅱ)當(dāng)SKIPIF1<0取所允許的不同的實(shí)數(shù)值時(shí)(SKIPIF1<0,且SKIPIF1<0),圓SKIPIF1<0是否經(jīng)過某定點(diǎn)(其坐標(biāo)與SKIPIF1<0無關(guān))?請(qǐng)證明你的結(jié)論.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0【詳解】(Ⅰ)設(shè)圓SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,與SKIPIF1<0是同一方程,所以SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,方程SKIPIF1<0有一根為SKIPIF1<0,所以SKIPIF1<0,所以圓SKIPIF1<0的方程為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),圓C的方程為SKIPIF1<0.(Ⅱ)由(Ⅰ)知,圓SKIPIF1<0的方程為SKIPIF1<0,轉(zhuǎn)化為:SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故圓SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0.【變式2】(2023秋·上海普陀·高二上海市晉元高級(jí)中學(xué)??计谀┮阎獔AC經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)如果AB是圓C的直徑,證明:無論SKIPIF1<0取何正實(shí)數(shù),圓SKIPIF1<0恒經(jīng)過除SKIPIF1<0外的另一個(gè)定點(diǎn),求出這個(gè)定點(diǎn)坐標(biāo).(2)已知點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0也在圓SKIPIF1<0,且過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與兩坐標(biāo)軸分別交于不同兩點(diǎn)SKIPIF1<0和SKIPIF1<0,當(dāng)圓SKIPIF1<0的面積最小時(shí),試求SKIPIF1<0的最小值.【答案】(1)證明見解析,定點(diǎn)為SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)點(diǎn)SKIPIF1<0是圓SKIPIF1<0上任意一點(diǎn),因?yàn)锳B是圓C的直徑,所以SKIPIF1<0,即SKIPIF1<0,所以圓SKIPIF1<0的方程為:SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時(shí)等式恒成立,故定點(diǎn)為SKIPIF1<0,所以無論a取何正實(shí)數(shù),圓C恒經(jīng)過除A外的另一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為SKIPIF1<0;(2)因點(diǎn)A關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0也在圓C上,所以點(diǎn)C在直線SKIPIF1<0上,又圓C的面積最小,所以圓C是以SKIPIF1<0直徑的圓,設(shè)過點(diǎn)A與直線SKIPIF1<0垂直的直線方程為SKIPIF1<0,由方程組SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0所以圓C的方程為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,由題意知直線l斜率存在且不為零,設(shè)直線l的方程為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0,時(shí)SKIPIF1<0,所以SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào))則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0題型10圓的實(shí)際應(yīng)用【典例1】(2022·高二課時(shí)練習(xí))蘇州有很多圓拱的懸索拱橋(如寒山橋),經(jīng)測得某圓拱索橋(如圖)的跨度SKIPIF1<0米,拱高SKIPIF1<0米,在建造圓拱橋時(shí)每隔5米需用一根支柱支撐,求與SKIPIF1<0相距30米的支柱SKIPIF1<0的高度.【答案】SKIPIF1<0(米)【詳解】以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在的直線為SKIPIF1<0軸,建立如圖所示的直角坐標(biāo)系根據(jù)題意可知,SKIPIF1<0,所以SKIPIF1<0,設(shè)圓心為SKIPIF1<0,圓拱所在圓的方程為SKIPIF1<0,則因?yàn)镾KIPIF1<0在圓拱所在圓的方程上,所以SKIPIF1<0,解得SKIPIF1<0.即圓拱所在的圓方程為SKIPIF1<0,將SKIPIF1<0代入圓方程,得SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0,SKIPIF1<0.所以與OP相距30米的支柱MN的高度為SKIPIF1<0(米).【典例2】(2022秋·江西南昌·高二南昌市外國語學(xué)校校考階段練習(xí))如圖所示,某隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長方形的三邊構(gòu)成.已知隧道總寬度SKIPIF1<0為SKIPIF1<0,行車道總寬度SKIPIF1<0為SKIPIF1<0,側(cè)墻高SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,弧頂高SKIPIF1<0為SKIPIF1<0.(1)以SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0為單位長度建立平面直角坐標(biāo)系,求圓弧所在的圓的標(biāo)準(zhǔn)方程;(2)為保證安全,要求隧道頂部與行駛車輛頂部(設(shè)為平頂)在豎直方向上的高度之差至少為SKIPIF1<0,問車輛通過隧道的限制高度是多少?【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)由題意,有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0所求圓的圓心在SKIPIF1<0軸上,SKIPIF1<0設(shè)圓的方程為SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0,SKIPIF1<0都在圓上,SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0圓的標(biāo)準(zhǔn)方程是SKIPIF1<0.(2)設(shè)限高為SKIPIF1<0,作SKIPIF1<0,交圓弧于點(diǎn)SKIPIF1<0,則SKIPIF1<0.將點(diǎn)SKIPIF1<0的橫坐標(biāo)SKIPIF1<0代入圓的方程,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去).SKIPIF1<0.故車輛通過隧道的限制高度為SKIPIF1<0.【變式1】(2023秋·高一單元測試)如圖是一座類似于上海盧浦大橋的圓拱橋示意圖,該圓弧拱跨度SKIPIF1<0為SKIPIF1<0,圓拱的最高點(diǎn)SKIPIF1<0離水面SKIPIF1<0的高度為SKIPIF1<0,橋面SKIPIF1<0離水面SKIPIF1<0的高度為SKIPIF1<0.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求圓拱所在圓的方程;(2)求橋面在圓拱內(nèi)部分SKIPIF1<0的長度.(結(jié)果精確到SKIPIF1<0)【答案】(1)建系見解析,圓拱方程為SKIPIF1<0,SKIPIF1<0.(2)橋面在圓拱內(nèi)部分SKIPIF1<0的長度約為367.4m【詳解】(1)設(shè)圓拱所在圓的圓心為SKIPIF1<0,以SKIPIF1<0為原點(diǎn),SKIPIF1<0方向?yàn)镾KIPIF1<0軸正方向,SKIPIF1<0中垂線向上為SKIPIF1<0軸正方向,建立如圖所示的平面直角坐標(biāo)系.
設(shè)SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0點(diǎn),SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0點(diǎn),連接SKIPIF1<0設(shè)圓的半徑為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在直角SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以圓拱方程為SKIPIF1<0,SKIPIF1<0.(2)由題意得,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以橋面在圓拱內(nèi)部分SKIPIF1<0的長度約為367.4m【變式2】(2023春·上海浦東新·高二上海市實(shí)驗(yàn)學(xué)校??计谥校┤鐖D,在寬為14的路邊安裝路燈,燈柱SKIPIF1<0高為8,燈桿SKIPIF1<0是半徑為SKIPIF1<0的圓SKIPIF1<0的一段劣弧.路燈采用錐形燈
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《過程控制專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工業(yè)大學(xué)《大數(shù)據(jù)和人工智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東創(chuàng)新科技職業(yè)學(xué)院《CPA稅法》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)生口才表演課件圖片
- 培訓(xùn)學(xué)校課件
- 廣東碧桂園職業(yè)學(xué)院《音樂律動(dòng)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《如何品鑒葡萄酒》課件
- 贛南醫(yī)學(xué)院《國際商法與公司治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 《外周血管介入護(hù)理》課件
- 贛東學(xué)院《實(shí)驗(yàn)室安全與法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 外貿(mào)中常見付款方式的英文表達(dá)及簡要說明
- 臺(tái)式電腦采購評(píng)分標(biāo)準(zhǔn)
- 初次申領(lǐng)《南京市建筑業(yè)企業(yè)信用管理手冊(cè)(電子版)》辦事
- 某冶金機(jī)械修造廠總降壓變電所及配電系統(tǒng)設(shè)計(jì)
- 中國移動(dòng)呼叫中心運(yùn)營管理指標(biāo)體系
- 泰安市生育保險(xiǎn)待遇申報(bào)表
- 5WHY分析報(bào)告模板-改進(jìn)版
- 移動(dòng)式虹吸管防汛搶險(xiǎn)設(shè)備(移動(dòng)式虹吸搶險(xiǎn)泵)
- 魯教版選修《將軍族》原文閱讀
- FAF、PAF型電站動(dòng)葉可調(diào)軸流式送風(fēng)機(jī)、一次風(fēng)機(jī)安裝和使用維護(hù)說明書B本(1)
- 南京工程學(xué)院圖書館地源熱泵
評(píng)論
0/150
提交評(píng)論