版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省滁州市部分高中2024屆高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.若點在函數(shù)的圖像上,則A.8 B.6C.4 D.22.已知函數(shù),若方程有三個不同的實數(shù)根,則實數(shù)的取值范圍是A. B.C. D.3.,,,則的大小關(guān)系為()A. B.C. D.4.已知O是所在平面內(nèi)的一定點,動點P滿足,則動點P的軌跡一定通過的()A.內(nèi)心 B.外心C.重心 D.垂心5.已知函數(shù)在區(qū)間是減函數(shù),則實數(shù)a的取值范圍是A. B.C. D.6.函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上有零點,則的取值范圍是A. B.C. D.7.滿足的集合的個數(shù)為()A. B.C. D.8.已知為三角形的內(nèi)角,且,則()A. B.C. D.9.函數(shù)的零點是A. B.C. D.10.如圖,在平面直角坐標(biāo)系xOy中,角的頂點與原點O重合,它的始邊與x軸的非負(fù)半軸重合,終邊OP交單位圓O于點P,則點P的坐標(biāo)為A.
,B.
,
C.
,D.
11.下列關(guān)于函數(shù),的單調(diào)性的敘述,正確的是()A.在上是增函數(shù),在上是減函數(shù)B.在和上是增函數(shù),在上是減函數(shù)C.在上是增函數(shù),在上是減函數(shù)D.在上是增函數(shù),在和上是減函數(shù)12.已知是銳角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角二、填空題(本大題共4小題,共20分)13.如圖所示,中,,邊AC上的高,則其水平放置的直觀圖的面積為______14.函數(shù)的值域是____________,單調(diào)遞增區(qū)間是____________.15.已知冪函數(shù)的圖象過點,且,則a的取值范圍是______16.已知,則_____.三、解答題(本大題共6小題,共70分)17.已知函數(shù).(1)求其最小正周期和對稱軸方程;(2)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間和值域.18.已知函數(shù)的部分圖象如圖所示.(1)求的解析式及對稱中心坐標(biāo):(2)先把的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若當(dāng)時,關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.19.如圖所示,在直三棱柱中,,,,,點是中點()求證:平面()求直線與平面所成角的正切值20.已知全集,集合,(1)求,;(2)若,,求實數(shù)m的取值范圍.21.已知實數(shù),定義域為的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù)(Ⅰ)求實數(shù)值;(Ⅱ)判斷該函數(shù)在上的單調(diào)性并用定義證明;(Ⅲ)是否存在實數(shù),使得對任意的,不等式恒成立.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由22.某種樹木栽種時高度為A米為常數(shù),記栽種x年后的高度為,經(jīng)研究發(fā)現(xiàn),近似地滿足,其中,a,b為常數(shù),,已知,栽種三年后該樹木的高度為栽種時高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽種多少年后,該樹木的高度將不低于栽種時的5倍參考數(shù)據(jù):,
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由已知利用對數(shù)的運算可得tanθ,再利用倍角公式及同角三角函數(shù)基本關(guān)系的運用化簡即可求值【詳解】解:∵點(8,tanθ)在函數(shù)y=的圖象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故選B【點睛】本題主要考查了對數(shù)的運算性質(zhì),倍角公式及同角三角函數(shù)基本關(guān)系的運用,屬于基礎(chǔ)題2、A【解析】由得畫出函數(shù)的圖象如圖所示,且當(dāng)時,函數(shù)的圖象以為漸近線結(jié)合圖象可得當(dāng)?shù)膱D象與直線有三個不同的交點,故若方程有三個不同的實數(shù)根,實數(shù)的取值范圍是.選A點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決,如在本題中,方程根的個數(shù),即為直線與圖象的公共點的個數(shù);(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.3、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.4、A【解析】表示的是方向上的單位向量,畫圖象,根據(jù)圖象可知點在的角平分線上,故動點必過三角形的內(nèi)心.【詳解】如圖,設(shè),,已知均為單位向量,故四邊形為菱形,所以平分,由得,又與有公共點,故三點共線,所以點在的角平分線上,故動點的軌跡經(jīng)過的內(nèi)心.故選:A.5、C【解析】先由題意得到二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;列出不等式組求解,即可得出結(jié)果.【詳解】因為函數(shù)在區(qū)間是減函數(shù),所以只需二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;所以有:,解得;故選C【點睛】本題主要考查由對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的問題,熟記對數(shù)函數(shù)與二次函數(shù)的性質(zhì)即可,屬于??碱}型.6、C【解析】分析:結(jié)合余弦函數(shù)的單調(diào)減區(qū)間,求出零點,再結(jié)合零點范圍列出不等式詳解:當(dāng),,又∵,則,即,,由得,,∴,解得,綜上.故選C.點睛:余弦函數(shù)的單調(diào)減區(qū)間:,增區(qū)間:,零點:,對稱軸:,對稱中心:,.7、B【解析】列舉出符合條件的集合,即可得出答案.【詳解】滿足的集合有:、、.因此,滿足的集合的個數(shù)為.故選:B.【點睛】本題考查符合條件的集合個數(shù)的計算,只需列舉出符合條件的集合即可,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.8、A【解析】根據(jù)同角三角函數(shù)的基本關(guān)系,運用“弦化切”求解即可.【詳解】計算得,所以,,從而可計算的,,,選項A正確,選項BCD錯誤.故選:A.9、B【解析】函數(shù)y=x2-2x-3的零點即對應(yīng)方程的根,故只要解二次方程即可【詳解】由y=x2-2x-3=(x-3)(x+1)=0,得到x=3或x=-1,所以函數(shù)y=x2-2x-3的零點是3和-1故選B【點睛】本題考查函數(shù)的零點的概念和求法.屬基本概念、基本運算的考查10、D【解析】直接利用任意角的三角函數(shù)的定義求得點P的坐標(biāo)【詳解】設(shè),由任意角的三角函數(shù)的定義得,,點P的坐標(biāo)為故選D【點睛】本題考查任意角的三角函數(shù)的定義,是基礎(chǔ)題11、D【解析】根據(jù)正弦函數(shù)的單調(diào)性即可求解【詳解】解:因為的單調(diào)遞增區(qū)間為,,,單調(diào)遞減區(qū)間為,,,又,,所以函數(shù)在,上是增函數(shù),在,和,上是減函數(shù),故選:D12、D【解析】根據(jù)是銳角求出的取值范圍,進(jìn)而得出答案【詳解】因為是銳角,所以,故故選D.【點睛】本題考查象限角,屬于簡單題二、填空題(本大題共4小題,共20分)13、.【解析】直接根據(jù)直觀圖與原圖像面積的關(guān)系求解即可.【詳解】的面積為,由平面圖形的面積與直觀圖的面積間的關(guān)系.故答案為:.14、①.②.【解析】先求二次函數(shù)值域,再根據(jù)指數(shù)函數(shù)單調(diào)性求函數(shù)值域;根據(jù)二次函數(shù)單調(diào)性與指數(shù)函數(shù)單調(diào)性以及復(fù)合函數(shù)單調(diào)性法則求函數(shù)增區(qū)間.【詳解】因為,所以,即函數(shù)的值域是因為單調(diào)遞減,在(1,+)上單調(diào)遞減,因此函數(shù)的單調(diào)遞增區(qū)間是(1,+).【點睛】本題考查復(fù)合函數(shù)值域與單調(diào)性,考查基本分析求解能力.15、【解析】先求得冪函數(shù)的解析式,根據(jù)函數(shù)的奇偶性、單調(diào)性來求得的取值范圍.【詳解】設(shè),則,所以,在上遞增,且為奇函數(shù),所以.故答案為:16、3【解析】利用誘導(dǎo)公式求出,再將所求值的式子弦化切,代值計算即得.【詳解】因,所以.故答案為:3.三、解答題(本大題共6小題,共70分)17、(1)最小正周期為,對稱軸方程;(2)單調(diào)遞減區(qū)間為,值域為.【解析】(1)利用倍角公式、輔助角公式化簡函數(shù),結(jié)合正弦函數(shù)的性質(zhì)計算作答.(2)確定函數(shù)的相位范圍,再借助正弦函數(shù)的性質(zhì)計算作答.【小問1詳解】依題意,,則,由解得:,所以,函數(shù)的最小正周期為,對稱軸方程為.【小問2詳解】由(1)知,因,則,而正弦函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,由解得,由解得,因此,在上單調(diào)遞減,在上單調(diào)遞增,,而,即,所以函數(shù)單調(diào)遞減區(qū)間是,值域為.18、(1),(2)【解析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高點可求得的值,即可得的解析式,由正弦函數(shù)的對稱中心可得對稱中心;(2)由圖象的平移變換求得的解析式,由正弦函數(shù)的性質(zhì)可得的值域,令的取值為的值域,解不等式即可求解.【小問1詳解】由題意可得:,可得,所以,因為,所以,可得,所以,由可得,因為,所以,,所以.令可得,所以對稱中心為.【小問2詳解】由題意可得:,當(dāng)時,,,若關(guān)于的方程有實數(shù)根,則有實根,所以,可得:.所以實數(shù)的取值范圍為.19、(1)見解析(2).【解析】(1)設(shè)BC1與CB1交于點O,連接OD,利用三角形中位線性質(zhì),證明OD∥AC1,利用線面平行的判定,可得AC1∥平面CDB1(2)過D作DE⊥BC,連結(jié)B1E,則DE⊥平面BCC1B1,于是∠DB1E為直線DB1與平面BCC1B1所成的角.利用勾股定理求出DE,B1E,計算tan∠DB1E【詳解】(1)證明:設(shè)BC1與CB1交于點O,則O為BC1的中點在△ABC1中,連接OD,∵D,O分別為AB,BC1的中點,∴OD為△ABC1的中位線,∴OD∥AC1,又AC1?平面CDB1,OD?平面CDB1,∴AC1∥平面CDB1(2)過D作DE⊥BC,連結(jié)B1E,則DE⊥平面BCC1B1,∴∠DB1E為直線DB1與平面BCC1B1所成的角∵D是AB的中點,∴DE,BE,∴B1E∴tan∠DB1E【點晴】本題考查了線面平行的判定,線面角的計算,屬于中檔題20、(1),或(2)【解析】(1)首先解指數(shù)不等式求出集合,再根據(jù)交集、并集、補(bǔ)集的定義計算可得;(2)依題意可得,即可得到不等式,解得即可;小問1詳解】解:由,即,解得,所以,又,所以,或,所以或;【小問2詳解】解:因為,所以,所以,解得,即;21、(Ⅰ)1;(Ⅱ)在上遞增,證明詳見解析;(Ⅲ)不存在.【解析】(Ⅰ)根據(jù)函數(shù)是偶函數(shù),得到恒成立,即恒成立,進(jìn)而得到,即可求出結(jié)果;(Ⅱ)任取,且,根據(jù)題意,作差得到,進(jìn)而可得出函數(shù)單調(diào)性;(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,由函數(shù)是偶函數(shù),所以函數(shù)在上遞減,再由題意,不等式恒成立可化為恒成立,即對任意的恒成立,根據(jù)判別式小于0,即可得出結(jié)果.【詳解】(Ⅰ)因為定義域為的函數(shù)是偶函數(shù),則恒成立,即,故恒成立,因為不可能恒為,所以當(dāng)時,恒成立,而,所以(Ⅱ)該函數(shù)在上遞增,證明如下設(shè)任意,且,則,因為,所以,且;所以,即,即;故函數(shù)在上遞增(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,而函數(shù)是偶函數(shù),則函數(shù)在上遞減.若存在實數(shù),使得對任意的,不等式恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生物科技研發(fā)與技術(shù)轉(zhuǎn)讓合同
- 2025版新能源項目安全風(fēng)險評估與管理服務(wù)合同范本3篇
- 2024年版的攝影攝像服務(wù)協(xié)議
- 2025版原料藥生產(chǎn)廢棄物處理與環(huán)保設(shè)施建設(shè)合同2篇
- 2024深圳房地產(chǎn)買賣合同
- 2024年私人買賣自住型住宅定金及物業(yè)服務(wù)協(xié)議3篇
- 2024年虛擬現(xiàn)實內(nèi)容創(chuàng)作與分成協(xié)議
- 學(xué)校安全生產(chǎn)工作總結(jié)范文(8篇)
- 2024片石石材加工廢棄物資源化利用合作合同3篇
- 2024普法推廣:民法典婚姻家庭編法律知識傳播合同3篇
- 慢性病防治健康教育知識講座
- 骶尾部藏毛疾病診治中國專家共識(2023版)
- 【高新技術(shù)企業(yè)所得稅稅務(wù)籌劃探析案例:以科大訊飛為例13000字(論文)】
- 幽門螺旋桿菌
- 智慧農(nóng)業(yè)利用技術(shù)提高農(nóng)業(yè)可持續(xù)發(fā)展的方案
- 制冷壓縮機(jī)安全操作規(guī)程范文
- 初中歷史考試試題答題卡模版
- 《草圖大師建模》授課計劃+教案
- 小學(xué)音樂-鈴兒響叮當(dāng)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 《3-6歲兒童學(xué)習(xí)與發(fā)展指南》考試試題
- 核磁移機(jī)施工方案
評論
0/150
提交評論