新高考數(shù)學(xué)一輪復(fù)習(xí)提升練習(xí)考點(diǎn)14 導(dǎo)數(shù)的概念及應(yīng)用 (含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)提升練習(xí)考點(diǎn)14 導(dǎo)數(shù)的概念及應(yīng)用 (含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)提升練習(xí)考點(diǎn)14 導(dǎo)數(shù)的概念及應(yīng)用 (含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)提升練習(xí)考點(diǎn)14 導(dǎo)數(shù)的概念及應(yīng)用 (含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)提升練習(xí)考點(diǎn)14 導(dǎo)數(shù)的概念及應(yīng)用 (含解析)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

考向14導(dǎo)數(shù)的概念及應(yīng)用1.(2021·全國(guó)高考真題)若過(guò)點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫(huà)出曲線SKIPIF1<0的圖象,根據(jù)直觀即可判定點(diǎn)SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時(shí)才可以作出兩條切線.【詳解】在曲線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,由題意可知,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,由題意可知,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個(gè)交點(diǎn),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個(gè)交點(diǎn).故選:D.解法二:畫(huà)出函數(shù)曲線SKIPIF1<0的圖象如圖所示,根據(jù)直觀即可判定點(diǎn)SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時(shí)才可以作出兩條切線.由此可知SKIPIF1<0.故選:D.【點(diǎn)睛】解法一是嚴(yán)格的證明求解方法,其中的極限處理在中學(xué)知識(shí)范圍內(nèi)需要用到指數(shù)函數(shù)的增長(zhǎng)特性進(jìn)行估計(jì),解法二是根據(jù)基于對(duì)指數(shù)函數(shù)的圖象的清晰的理解與認(rèn)識(shí)的基礎(chǔ)上,直觀解決問(wèn)題的有效方法.2.(2021·北京高考真題)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0處切線方程;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,求SKIPIF1<0的單調(diào)區(qū)間,以及最大值和最小值.【答案】(1)SKIPIF1<0;(2)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,最大值為SKIPIF1<0,最小值為SKIPIF1<0.【分析】(1)求出SKIPIF1<0、SKIPIF1<0的值,利用點(diǎn)斜式可得出所求切線的方程;(2)由SKIPIF1<0可求得實(shí)數(shù)SKIPIF1<0的值,然后利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性與極值,由此可得出結(jié)果.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí),曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,則SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減極小值增所以,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以,SKIPIF1<0,SKIPIF1<0.1.求函數(shù)導(dǎo)數(shù)的總原則:先化簡(jiǎn)解析式,再求導(dǎo).注意以下幾點(diǎn):連乘形式則先展開(kāi)化為多項(xiàng)式形式,再求導(dǎo);三角形式,先利用三角函數(shù)公式轉(zhuǎn)化為和或差的形式,再求導(dǎo);分式形式,先化為整式函數(shù)或較為簡(jiǎn)單的分式函數(shù),再求導(dǎo);復(fù)合函數(shù),先確定復(fù)合關(guān)系,由外向內(nèi)逐層求導(dǎo),必要時(shí)可換元2.利用導(dǎo)數(shù)研究曲線的切線問(wèn)題,一定要熟練掌握以下三點(diǎn):(1)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率,即已知切點(diǎn)坐標(biāo)可求切線斜率,已知斜率可求切點(diǎn)坐標(biāo).(2)切點(diǎn)既在曲線上,又在切線上,切線還有可能和曲線有其它的公共點(diǎn).(3)曲線y=f(x)“在”點(diǎn)P(x0,y0)處的切線與“過(guò)”點(diǎn)P(x0,y0)的切線的區(qū)別:曲線y=f(x)在點(diǎn)P(x0,y0)處的切線是指點(diǎn)P為切點(diǎn),若切線斜率存在,切線斜率為k=f′(x0),是唯一的一條切線;曲線y=f(x)過(guò)點(diǎn)P(x0,y0)的切線,是指切線經(jīng)過(guò)點(diǎn)P,點(diǎn)P可以是切點(diǎn),也可以不是切點(diǎn),而且這樣的直線可能有多條.3.利用導(dǎo)數(shù)的幾何意義求參數(shù)的基本方法利用切點(diǎn)的坐標(biāo)、切線的斜率、切線的方程等得到關(guān)于參數(shù)的方程(組)或者參數(shù)滿足的不等式(組),進(jìn)而求出參數(shù)的值或取值范圍.4.求解與導(dǎo)數(shù)的幾何意義有關(guān)問(wèn)題時(shí)應(yīng)注意的兩點(diǎn)(1)注意曲線上橫坐標(biāo)的取值范圍;(2)謹(jǐn)記切點(diǎn)既在切線上又在曲線上.1.導(dǎo)數(shù)的概念(1)一般地,函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率是eq\o(lim,\s\do4(Δx→0))eq\f(Δy,Δx)=eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx),我們稱它為函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù),記作f′(x0)或SKIPIF1<0,即f′(x0)=eq\o(lim,\s\do4(Δx→0))eq\f(Δy,Δx)=eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx).(2)如果函數(shù)y=f(x)在開(kāi)區(qū)間(a,b)內(nèi)的每一點(diǎn)處都有導(dǎo)數(shù),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個(gè)新函數(shù),這個(gè)函數(shù)稱為函數(shù)y=f(x)在開(kāi)區(qū)間(a,b)內(nèi)的導(dǎo)函數(shù).簡(jiǎn)稱導(dǎo)數(shù),記作f′(x)或y′.2.導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)的幾何意義就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率,相應(yīng)的切線方程為y-f(x0)=f′(x0)(x-x0).3.基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)導(dǎo)函數(shù)f(x)=c(c為常數(shù))f′(x)=0f(x)=xα(α∈Q,α≠0)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=ax(a>0且a≠1)f′(x)=axlnaf(x)=exf′(x)=exf(x)=logax(a>0且a≠1)f′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)4.導(dǎo)數(shù)的運(yùn)算法則若f′(x),g′(x)存在,則有[f(x)±g(x)]′=f′(x)±g′(x);[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fxg′x,[gx]2)(g(x)≠0);[cf(x)]′=cf′(x).【知識(shí)拓展】復(fù)合函數(shù)的定義及其導(dǎo)數(shù)(1)一般地,對(duì)于兩個(gè)函數(shù)y=f(u)和u=g(x),如果通過(guò)中間變量u,y可以表示成x的函數(shù),那么稱這個(gè)函數(shù)為函數(shù)y=f(u)與u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).(2)復(fù)合函數(shù)y=f(g(x))的導(dǎo)數(shù)和函數(shù)y=f(u),u=g(x)的導(dǎo)數(shù)間的關(guān)系為y′x=y(tǒng)′u·u′x,即y對(duì)x的導(dǎo)數(shù)等于y對(duì)u的導(dǎo)數(shù)與u對(duì)x的導(dǎo)數(shù)的乘積.1.(2021·河南南陽(yáng)市·高二其他模擬(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·千陽(yáng)縣中學(xué)高三二模(理))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0()A.9903 B.9902 C.9901 D.99003.(2021·全國(guó)高三其他模擬(文))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),則SKIPIF1<0___________.4.(2021·新沂市第一中學(xué)高三其他模擬)已知函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則a的值為_(kāi)__________1.(2021·河南新鄉(xiāng)市·高三三模(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.36 B.12 C.4 D.22.(2021·千陽(yáng)縣中學(xué)高三其他模擬(理))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足:(1)SKIPIF1<0,(2)SKIPIF1<0,則SKIPIF1<0的取值范圍是()A. B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·全國(guó)高三月考(文))拉格朗日中值定理又稱拉氏定理,是微積分學(xué)中的基本定理之一,它反映了函數(shù)在閉區(qū)間上的整體平均變化率與區(qū)間某點(diǎn)的局部變化率的關(guān)系,其具體內(nèi)容如下:若SKIPIF1<0在SKIPIF1<0上滿足以下條件:①在SKIPIF1<0上圖象連續(xù),②在SKIPIF1<0內(nèi)導(dǎo)數(shù)存在,則在SKIPIF1<0內(nèi)至少存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)).則函數(shù)SKIPIF1<0在SKIPIF1<0上這樣的SKIPIF1<0點(diǎn)的個(gè)數(shù)為()A.1 B.2 C.3 D.44.(2021·云南紅河哈尼族彝族自治州·高三三模(文))丹麥數(shù)學(xué)家琴生是19世紀(jì)對(duì)數(shù)學(xué)分析做出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凹凸性與不等式方面留下了很多寶貴的成果.定義:函數(shù)SKIPIF1<0在SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,若在SKIPIF1<0上SKIPIF1<0恒成立,則稱函數(shù)SKIPIF1<0在SKIPIF1<0上的“嚴(yán)格凸函數(shù)”,稱區(qū)間SKIPIF1<0為函數(shù)SKIPIF1<0的“嚴(yán)格凸區(qū)間”.則下列正確命題的序號(hào)為_(kāi)_____.①函數(shù)SKIPIF1<0在SKIPIF1<0上為“嚴(yán)格凸函數(shù)”;②函數(shù)SKIPIF1<0的“嚴(yán)格凸區(qū)間”為SKIPIF1<0;③函數(shù)SKIPIF1<0在SKIPIF1<0為“嚴(yán)格凸函數(shù)”,則SKIPIF1<0的取值范圍為SKIPIF1<0.5.(2021·江蘇高二專題練習(xí))設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.6.(2021·合肥市第六中學(xué)高三其他模擬(理))已知SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是___________.7.(2021·河北饒陽(yáng)中學(xué)高三其他模擬)曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則該切線的方程為_(kāi)_________.8.(2021·吉林松原市·高三月考)已知SKIPIF1<0,則SKIPIF1<0最小值為_(kāi)__________.9.(2021·廣東佛山市·高三其他模擬)已知函數(shù)SKIPIF1<0,則SKIPIF1<0所有的切線中斜率最小的切線方程為_(kāi)________.10.(2021·全國(guó)高三其他模擬)函數(shù)SKIPIF1<0在SKIPIF1<0處的切線與坐標(biāo)軸圍成的圖形面積為_(kāi)__________.11.(2021·全國(guó)高三其他模擬(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0___.12.(2021·四川省綿陽(yáng)南山中學(xué)高三其他模擬(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),曲線SKIPIF1<0在SKIPIF1<0處切線的傾斜角的正切值為SKIPIF1<0.(1)求SKIPIF1<0的值;(2)證明:SKIPIF1<0.1.(2013·全國(guó)高考真題(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·全國(guó)高考真題(理))若直線l與曲線y=SKIPIF1<0和x2+y2=SKIPIF1<0都相切,則l的方程為()A.y=2x+1 B.y=2x+SKIPIF1<0 C.y=SKIPIF1<0x+1 D.y=SKIPIF1<0x+SKIPIF1<03.(2019·全國(guó)高考真題(理))已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2016·四川高考真題(文))設(shè)直線l1,l2分別是函數(shù)f(x)=SKIPIF1<0圖象上點(diǎn)P1,P-2處的切線,l1與l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)5.(2021·全國(guó)高考真題)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的兩條切線互相垂直,且分別交y軸于M,N兩點(diǎn),則SKIPIF1<0取值范圍是_______.6.(2021·全國(guó)高考真題(理))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為_(kāi)_________.7.(2019·江蘇高考真題)在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)A在曲線y=lnx上,且該曲線在點(diǎn)A處的切線經(jīng)過(guò)點(diǎn)(-e,-1)(e為自然對(duì)數(shù)的底數(shù)),則點(diǎn)A的坐標(biāo)是____.8.(2019·江蘇高考真題)在平面直角坐標(biāo)系SKIPIF1<0中,P是曲線SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線x+y=0的距離的最小值是_____.9.(2017·天津高考真題(文))已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0的圖象在點(diǎn)(1,SKIPIF1<0)處的切線為l,則l在y軸上的截距為_(kāi)_______.10.(2021·全國(guó)高考真題(理))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點(diǎn),求SKIPIF1<0面積的最大值.1.【答案】B【分析】依題意求出函數(shù)的導(dǎo)函數(shù),再解方程即可;【詳解】解:由題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:B2.【答案】C【分析】求出前幾項(xiàng)的導(dǎo)數(shù),計(jì)算數(shù)列SKIPIF1<0,找到規(guī)律,代入數(shù)值計(jì)算.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0為1,3,7,13,SKIPIF1<0,每一項(xiàng)為上一項(xiàng)的常數(shù)與上一項(xiàng)的一次項(xiàng)的系數(shù)之和,即SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:C.【點(diǎn)睛】思路點(diǎn)睛:本題考查數(shù)列的應(yīng)用:計(jì)算前幾項(xiàng)的導(dǎo)數(shù),發(fā)現(xiàn)每一項(xiàng)的常數(shù)都為上一項(xiàng)的常數(shù)與上一項(xiàng)中一次項(xiàng)的系數(shù)的和,寫(xiě)出遞推關(guān)系式,然后求得通項(xiàng)公式,代入計(jì)算.3.【答案】SKIPIF1<0【分析】利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】由SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)整理可得SKIPIF1<0.故答案為:SKIPIF1<04.【答案】SKIPIF1<0【分析】根據(jù)點(diǎn)P在函數(shù)的圖象上,求得b的值,得到SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義和直線垂直的條件求得SKIPIF1<0.【詳解】由已知可得SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.則函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線的斜率SKIPIF1<0,因?yàn)榍芯€與直線SKIPIF1<0垂直,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.1.【答案】C【分析】根據(jù)函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)的定義將SKIPIF1<0變形為SKIPIF1<0即可求解.【詳解】解:根據(jù)題意,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,故選:C.2.【答案】C【分析】根據(jù)題意構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,利用二者的單調(diào)性即可得到結(jié)果.【詳解】SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.故選:C【點(diǎn)睛】方法點(diǎn)睛:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要構(gòu)造函數(shù),一般:(1)條件含有SKIPIF1<0,就構(gòu)造SKIPIF1<0,(2)若SKIPIF1<0,就構(gòu)造SKIPIF1<0,(3)SKIPIF1<0,就構(gòu)造SKIPIF1<0,(4)SKIPIF1<0就構(gòu)造SKIPIF1<0,等便于給出導(dǎo)數(shù)時(shí)聯(lián)想構(gòu)造函數(shù).3.【答案】A【分析】用已知定義得到存在點(diǎn)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,轉(zhuǎn)化為研究函數(shù)數(shù)SKIPIF1<0和SKIPIF1<0圖象的交點(diǎn)個(gè)數(shù),作出函數(shù)圖象即可得到答案.【詳解】函數(shù)SKIPIF1<0,則SKIPIF1<0,由題意可知,存在點(diǎn)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如圖所示,由圖象可知,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象只有一個(gè)交點(diǎn),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0只有一個(gè)解,即函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上SKIPIF1<0點(diǎn)的個(gè)數(shù)為1個(gè).故選:A4.【答案】①②【分析】根據(jù)題干中給出的定義逐項(xiàng)檢驗(yàn)后可得正確的選項(xiàng).【詳解】SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上為“嚴(yán)格凸函數(shù)”,所以①正確;SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的“嚴(yán)格凸區(qū)間”為SKIPIF1<0,所以②正確;SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0上的“嚴(yán)格凸函數(shù)”,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0,所以③不正確.所以正確命題為:①②.故答案為:①②.5.【答案】2【分析】先對(duì)SKIPIF1<0求導(dǎo),將SKIPIF1<0代入SKIPIF1<0即可求解.【詳解】由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:2.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的運(yùn)算,屬于基礎(chǔ)題.6.【答案】SKIPIF1<0【分析】由條件求得當(dāng)SKIPIF1<0時(shí)的函數(shù)解析式,求導(dǎo),通過(guò)導(dǎo)數(shù)幾何意義求得在點(diǎn)SKIPIF1<0處的切線方程.【詳解】由題知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0則在點(diǎn)SKIPIF1<0的切線方程為:SKIPIF1<0,即SKIPIF1<0故答案為:SKIPIF1<07.【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義,先求切線斜率SKIPIF1<0,而直線SKIPIF1<0的斜率SKIPIF1<0,根據(jù)兩條直線垂直則SKIPIF1<0,代入即可得解.【詳解】由題意得SKIPIF1<0,則SKIPIF1<0,所以切線的斜率SKIPIF1<0.直線SKIPIF1<0的斜率SKIPIF1<0.因?yàn)閮芍本€相互垂直,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,則SKIPIF1<0,故該切線的方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<08.【答案】4【分析】將SKIPIF1<0看作兩點(diǎn)SKIPIF1<0,SKIPIF1<0之間距離的平方,然后根據(jù)幾何意義進(jìn)行求解即可.【詳解】SKIPIF1<0看作兩點(diǎn)SKIPIF1<0,SKIPIF1<0之間距離的平方,點(diǎn)A在直線SKIPIF1<0上,點(diǎn)B在曲線SKIPIF1<0上,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,取點(diǎn)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0最小值為4.故答案為:4.9.【答案】SKIPIF1<0【分析】求得函數(shù)導(dǎo)數(shù),由基本不等關(guān)系求得導(dǎo)數(shù)的最小值,即函數(shù)SKIPIF1<0所有切線中斜率最小值,進(jìn)而求得切線方程.【詳解】由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,則函數(shù)SKIPIF1<0所有切線中斜率最小為3,且過(guò)點(diǎn)SKIPIF1<0,則切線方程為SKIPIF1<0故答案為:SKIPIF1<010.【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程,進(jìn)而確定與坐標(biāo)軸的交點(diǎn)坐標(biāo),從而求得面積.【詳解】切點(diǎn)SKIPIF1<0,SKIPIF1<0,切線:SKIPIF1<0,即SKIPIF1<0,與SKIPIF1<0軸交點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交點(diǎn)SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0.11.【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義可知SKIPIF1<0,又SKIPIF1<0在切線上,可解得SKIPIF1<0的值,進(jìn)而可求SKIPIF1<0的值.【詳解】由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又切線方程為:SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0.12.【答案】(1)SKIPIF1<0;(2)證明見(jiàn)解析.【分析】(1)求出函數(shù)的導(dǎo)函數(shù),再代入計(jì)算可得;(2)依題意即證SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)說(shuō)明其單調(diào)性與最值,即可得到SKIPIF1<0,從而得證;【詳解】解:(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.(2)由(1)可得SKIPIF1<0即證SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0在SKIPIF1<0上是減函數(shù),在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0(SKIPIF1<0取等號(hào)).又令SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0在SKIPIF1<0上是增函數(shù),在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0(SKIPIF1<0時(shí)取等號(hào)).所以SKIPIF1<0,即SKIPIF1<0.1.【答案】D【分析】作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像,結(jié)合圖像可知直線SKIPIF1<0介于SKIPIF1<0與SKIPIF1<0軸之間,利用導(dǎo)數(shù)求出直線SKIPIF1<0的斜率,數(shù)形結(jié)合即可求解.【詳解】由題意可作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像.由圖像可知:函數(shù)SKIPIF1<0的圖像是過(guò)原點(diǎn)的直線,當(dāng)直線介于SKIPIF1<0與SKIPIF1<0軸之間符合題意,直線SKIPIF1<0為曲線的切線,且此時(shí)函數(shù)SKIPIF1<0在第二象限的部分的解析式為SKIPIF1<0,求其導(dǎo)數(shù)可得SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,故直線SKIPIF1<0的斜率為SKIPIF1<0,故只需直線SKIPIF1<0的斜率SKIPIF1<0SKIPIF1<0.故選:D【點(diǎn)睛】本題考查了不等式恒成立求出參數(shù)取值范圍,考查了數(shù)形結(jié)合的思想,屬于中檔題.2.【答案】D【分析】根據(jù)導(dǎo)數(shù)的幾何意義設(shè)出直線SKIPIF1<0的方程,再由直線與圓相切的性質(zhì),即可得出答案.【詳解】設(shè)直線SKIPIF1<0在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,則直線SKIPIF1<0的斜率SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由于直線SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0,兩邊平方并整理得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍),則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故選:D.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用以及直線與圓的位置的應(yīng)用,屬于中檔題.3.【答案】D【分析】通過(guò)求導(dǎo)數(shù),確定得到切線斜率的表達(dá)式,求得SKIPIF1<0,將點(diǎn)的坐標(biāo)代入直線方程,求得SKIPIF1<0.【詳解】詳解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,故選D.【點(diǎn)睛】本題關(guān)鍵得到含有a,b的等式,利用導(dǎo)數(shù)幾何意義和點(diǎn)在曲線上得到方程關(guān)系.4.【答案】A【詳解】試題分析:設(shè)SKIPIF1<0(不妨設(shè)SKIPIF1<0),則由導(dǎo)數(shù)的幾何意義易得切線SKIPIF1<0的斜率分別為SKIPIF1<0由已知得SKIPIF1<0切線SKIPIF1<0的方程分別為SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.分別令SKIPIF1<0得SKIPIF1<0又SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,故選A.考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.兩直線垂直關(guān)系;3.直線方程的應(yīng)用;4.三角形面積取值范圍.5.【答案】SKIPIF1<0【分析】結(jié)合導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,結(jié)合直線方程及兩點(diǎn)間距離公式可得SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)即可得解.【詳解】由題意,SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義轉(zhuǎn)化條件SKIPIF1<0,消去一個(gè)變量后,運(yùn)算即可得解.6.【答案】SKIPIF1<0【分析】先驗(yàn)證點(diǎn)在曲線上,再求導(dǎo),代入切線方程公式即可.【詳解】由題,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故點(diǎn)在曲線上.求導(dǎo)得:SKIPIF1<0,所以SKIPIF1<0.故切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.7.【答案】SKIPIF1<0.【分析】設(shè)出切點(diǎn)坐標(biāo),得到切線方程,然后求解方程得到橫坐標(biāo)的值可得切點(diǎn)坐標(biāo).【詳解】設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,點(diǎn)A在曲線SKIPIF1<0上的切線為SKIPIF1<0,即SKIPIF1<0,代入點(diǎn)SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,考查函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,注意到SKIPIF1<0,故SKIPIF1<0存在唯一的實(shí)數(shù)根SKIPIF1<0,此時(shí)SKIPIF1<0,故點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.【點(diǎn)睛】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問(wèn)題:一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號(hào),防止與乘法公式混淆.二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn).8.【答案】4.【分析】將原問(wèn)題轉(zhuǎn)化為切點(diǎn)與直線之間的距離,然后利用導(dǎo)函數(shù)確定切點(diǎn)坐標(biāo)可得最小距離【詳解】當(dāng)直線SKIPIF1<0平移到與曲線SKIPIF1<0相切位置時(shí),切點(diǎn)Q即為點(diǎn)P到直線SKIPIF1<0的距離最小.由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即切點(diǎn)SKIPIF1<0,則切點(diǎn)Q到直線SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論