版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
考向14導數(shù)的概念及應用1.(2021·全國高考真題)若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】解法一:根據(jù)導數(shù)幾何意義求得切線方程,再構造函數(shù),利用導數(shù)研究函數(shù)圖象,結合圖形確定結果;解法二:畫出曲線SKIPIF1<0的圖象,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.【詳解】在曲線SKIPIF1<0上任取一點SKIPIF1<0,對函數(shù)SKIPIF1<0求導得SKIPIF1<0,所以,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,由題意可知,點SKIPIF1<0在直線SKIPIF1<0上,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,由題意可知,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:由圖可知,當SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線SKIPIF1<0的圖象如圖所示,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.由此可知SKIPIF1<0.故選:D.【點睛】解法一是嚴格的證明求解方法,其中的極限處理在中學知識范圍內(nèi)需要用到指數(shù)函數(shù)的增長特性進行估計,解法二是根據(jù)基于對指數(shù)函數(shù)的圖象的清晰的理解與認識的基礎上,直觀解決問題的有效方法.2.(2021·北京高考真題)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0處切線方程;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,求SKIPIF1<0的單調(diào)區(qū)間,以及最大值和最小值.【答案】(1)SKIPIF1<0;(2)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,最大值為SKIPIF1<0,最小值為SKIPIF1<0.【分析】(1)求出SKIPIF1<0、SKIPIF1<0的值,利用點斜式可得出所求切線的方程;(2)由SKIPIF1<0可求得實數(shù)SKIPIF1<0的值,然后利用導數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性與極值,由此可得出結果.【詳解】(1)當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)因為SKIPIF1<0,則SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減極小值增所以,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0.所以,SKIPIF1<0,SKIPIF1<0.1.求函數(shù)導數(shù)的總原則:先化簡解析式,再求導.注意以下幾點:連乘形式則先展開化為多項式形式,再求導;三角形式,先利用三角函數(shù)公式轉(zhuǎn)化為和或差的形式,再求導;分式形式,先化為整式函數(shù)或較為簡單的分式函數(shù),再求導;復合函數(shù),先確定復合關系,由外向內(nèi)逐層求導,必要時可換元2.利用導數(shù)研究曲線的切線問題,一定要熟練掌握以下三點:(1)函數(shù)在切點處的導數(shù)值是切線的斜率,即已知切點坐標可求切線斜率,已知斜率可求切點坐標.(2)切點既在曲線上,又在切線上,切線還有可能和曲線有其它的公共點.(3)曲線y=f(x)“在”點P(x0,y0)處的切線與“過”點P(x0,y0)的切線的區(qū)別:曲線y=f(x)在點P(x0,y0)處的切線是指點P為切點,若切線斜率存在,切線斜率為k=f′(x0),是唯一的一條切線;曲線y=f(x)過點P(x0,y0)的切線,是指切線經(jīng)過點P,點P可以是切點,也可以不是切點,而且這樣的直線可能有多條.3.利用導數(shù)的幾何意義求參數(shù)的基本方法利用切點的坐標、切線的斜率、切線的方程等得到關于參數(shù)的方程(組)或者參數(shù)滿足的不等式(組),進而求出參數(shù)的值或取值范圍.4.求解與導數(shù)的幾何意義有關問題時應注意的兩點(1)注意曲線上橫坐標的取值范圍;(2)謹記切點既在切線上又在曲線上.1.導數(shù)的概念(1)一般地,函數(shù)y=f(x)在x=x0處的瞬時變化率是eq\o(lim,\s\do4(Δx→0))eq\f(Δy,Δx)=eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx),我們稱它為函數(shù)y=f(x)在x=x0處的導數(shù),記作f′(x0)或SKIPIF1<0,即f′(x0)=eq\o(lim,\s\do4(Δx→0))eq\f(Δy,Δx)=eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx).(2)如果函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)的每一點處都有導數(shù),其導數(shù)值在(a,b)內(nèi)構成一個新函數(shù),這個函數(shù)稱為函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)的導函數(shù).簡稱導數(shù),記作f′(x)或y′.2.導數(shù)的幾何意義函數(shù)y=f(x)在x=x0處的導數(shù)的幾何意義就是曲線y=f(x)在點P(x0,f(x0))處的切線的斜率,相應的切線方程為y-f(x0)=f′(x0)(x-x0).3.基本初等函數(shù)的導數(shù)公式基本初等函數(shù)導函數(shù)f(x)=c(c為常數(shù))f′(x)=0f(x)=xα(α∈Q,α≠0)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=ax(a>0且a≠1)f′(x)=axlnaf(x)=exf′(x)=exf(x)=logax(a>0且a≠1)f′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)4.導數(shù)的運算法則若f′(x),g′(x)存在,則有[f(x)±g(x)]′=f′(x)±g′(x);[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fxg′x,[gx]2)(g(x)≠0);[cf(x)]′=cf′(x).【知識拓展】復合函數(shù)的定義及其導數(shù)(1)一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過中間變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為函數(shù)y=f(u)與u=g(x)的復合函數(shù),記作y=f(g(x)).(2)復合函數(shù)y=f(g(x))的導數(shù)和函數(shù)y=f(u),u=g(x)的導數(shù)間的關系為y′x=y(tǒng)′u·u′x,即y對x的導數(shù)等于y對u的導數(shù)與u對x的導數(shù)的乘積.1.(2021·河南南陽市·高二其他模擬(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·千陽縣中學高三二模(理))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0()A.9903 B.9902 C.9901 D.99003.(2021·全國高三其他模擬(文))曲線SKIPIF1<0在點SKIPIF1<0處的切線經(jīng)過坐標原點,則SKIPIF1<0___________.4.(2021·新沂市第一中學高三其他模擬)已知函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則a的值為___________1.(2021·河南新鄉(xiāng)市·高三三模(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.36 B.12 C.4 D.22.(2021·千陽縣中學高三其他模擬(理))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且滿足:(1)SKIPIF1<0,(2)SKIPIF1<0,則SKIPIF1<0的取值范圍是()A. B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·全國高三月考(文))拉格朗日中值定理又稱拉氏定理,是微積分學中的基本定理之一,它反映了函數(shù)在閉區(qū)間上的整體平均變化率與區(qū)間某點的局部變化率的關系,其具體內(nèi)容如下:若SKIPIF1<0在SKIPIF1<0上滿足以下條件:①在SKIPIF1<0上圖象連續(xù),②在SKIPIF1<0內(nèi)導數(shù)存在,則在SKIPIF1<0內(nèi)至少存在一點SKIPIF1<0,使得SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導函數(shù)).則函數(shù)SKIPIF1<0在SKIPIF1<0上這樣的SKIPIF1<0點的個數(shù)為()A.1 B.2 C.3 D.44.(2021·云南紅河哈尼族彝族自治州·高三三模(文))丹麥數(shù)學家琴生是19世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凹凸性與不等式方面留下了很多寶貴的成果.定義:函數(shù)SKIPIF1<0在SKIPIF1<0上的導函數(shù)為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的導函數(shù)為SKIPIF1<0,若在SKIPIF1<0上SKIPIF1<0恒成立,則稱函數(shù)SKIPIF1<0在SKIPIF1<0上的“嚴格凸函數(shù)”,稱區(qū)間SKIPIF1<0為函數(shù)SKIPIF1<0的“嚴格凸區(qū)間”.則下列正確命題的序號為______.①函數(shù)SKIPIF1<0在SKIPIF1<0上為“嚴格凸函數(shù)”;②函數(shù)SKIPIF1<0的“嚴格凸區(qū)間”為SKIPIF1<0;③函數(shù)SKIPIF1<0在SKIPIF1<0為“嚴格凸函數(shù)”,則SKIPIF1<0的取值范圍為SKIPIF1<0.5.(2021·江蘇高二專題練習)設函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.6.(2021·合肥市第六中學高三其他模擬(理))已知SKIPIF1<0為奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程是___________.7.(2021·河北饒陽中學高三其他模擬)曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則該切線的方程為__________.8.(2021·吉林松原市·高三月考)已知SKIPIF1<0,則SKIPIF1<0最小值為___________.9.(2021·廣東佛山市·高三其他模擬)已知函數(shù)SKIPIF1<0,則SKIPIF1<0所有的切線中斜率最小的切線方程為_________.10.(2021·全國高三其他模擬)函數(shù)SKIPIF1<0在SKIPIF1<0處的切線與坐標軸圍成的圖形面積為___________.11.(2021·全國高三其他模擬(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0___.12.(2021·四川省綿陽南山中學高三其他模擬(文))設函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對數(shù)的底數(shù),曲線SKIPIF1<0在SKIPIF1<0處切線的傾斜角的正切值為SKIPIF1<0.(1)求SKIPIF1<0的值;(2)證明:SKIPIF1<0.1.(2013·全國高考真題(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·全國高考真題(理))若直線l與曲線y=SKIPIF1<0和x2+y2=SKIPIF1<0都相切,則l的方程為()A.y=2x+1 B.y=2x+SKIPIF1<0 C.y=SKIPIF1<0x+1 D.y=SKIPIF1<0x+SKIPIF1<03.(2019·全國高考真題(理))已知曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2016·四川高考真題(文))設直線l1,l2分別是函數(shù)f(x)=SKIPIF1<0圖象上點P1,P-2處的切線,l1與l2垂直相交于點P,且l1,l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)5.(2021·全國高考真題)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0和點SKIPIF1<0的兩條切線互相垂直,且分別交y軸于M,N兩點,則SKIPIF1<0取值范圍是_______.6.(2021·全國高考真題(理))曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為__________.7.(2019·江蘇高考真題)在平面直角坐標系SKIPIF1<0中,點A在曲線y=lnx上,且該曲線在點A處的切線經(jīng)過點(-e,-1)(e為自然對數(shù)的底數(shù)),則點A的坐標是____.8.(2019·江蘇高考真題)在平面直角坐標系SKIPIF1<0中,P是曲線SKIPIF1<0上的一個動點,則點P到直線x+y=0的距離的最小值是_____.9.(2017·天津高考真題(文))已知SKIPIF1<0,設函數(shù)SKIPIF1<0的圖象在點(1,SKIPIF1<0)處的切線為l,則l在y軸上的截距為________.10.(2021·全國高考真題(理))已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點,求SKIPIF1<0面積的最大值.1.【答案】B【分析】依題意求出函數(shù)的導函數(shù),再解方程即可;【詳解】解:由題意可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0.故選:B2.【答案】C【分析】求出前幾項的導數(shù),計算數(shù)列SKIPIF1<0,找到規(guī)律,代入數(shù)值計算.【詳解】解:因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0為1,3,7,13,SKIPIF1<0,每一項為上一項的常數(shù)與上一項的一次項的系數(shù)之和,即SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:C.【點睛】思路點睛:本題考查數(shù)列的應用:計算前幾項的導數(shù),發(fā)現(xiàn)每一項的常數(shù)都為上一項的常數(shù)與上一項中一次項的系數(shù)的和,寫出遞推關系式,然后求得通項公式,代入計算.3.【答案】SKIPIF1<0【分析】利用導數(shù)的幾何意義即可求解.【詳解】由SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡整理可得SKIPIF1<0.故答案為:SKIPIF1<04.【答案】SKIPIF1<0【分析】根據(jù)點P在函數(shù)的圖象上,求得b的值,得到SKIPIF1<0,利用導數(shù)的幾何意義和直線垂直的條件求得SKIPIF1<0.【詳解】由已知可得SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.則函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線的斜率SKIPIF1<0,因為切線與直線SKIPIF1<0垂直,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.1.【答案】C【分析】根據(jù)函數(shù)SKIPIF1<0在SKIPIF1<0處的導數(shù)的定義將SKIPIF1<0變形為SKIPIF1<0即可求解.【詳解】解:根據(jù)題意,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,故選:C.2.【答案】C【分析】根據(jù)題意構造函數(shù)SKIPIF1<0與SKIPIF1<0,利用二者的單調(diào)性即可得到結果.【詳解】SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.故選:C【點睛】方法點睛:本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,需要構造函數(shù),一般:(1)條件含有SKIPIF1<0,就構造SKIPIF1<0,(2)若SKIPIF1<0,就構造SKIPIF1<0,(3)SKIPIF1<0,就構造SKIPIF1<0,(4)SKIPIF1<0就構造SKIPIF1<0,等便于給出導數(shù)時聯(lián)想構造函數(shù).3.【答案】A【分析】用已知定義得到存在點SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,轉(zhuǎn)化為研究函數(shù)數(shù)SKIPIF1<0和SKIPIF1<0圖象的交點個數(shù),作出函數(shù)圖象即可得到答案.【詳解】函數(shù)SKIPIF1<0,則SKIPIF1<0,由題意可知,存在點SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如圖所示,由圖象可知,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象只有一個交點,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0只有一個解,即函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上SKIPIF1<0點的個數(shù)為1個.故選:A4.【答案】①②【分析】根據(jù)題干中給出的定義逐項檢驗后可得正確的選項.【詳解】SKIPIF1<0的導函數(shù)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上為“嚴格凸函數(shù)”,所以①正確;SKIPIF1<0的導函數(shù)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的“嚴格凸區(qū)間”為SKIPIF1<0,所以②正確;SKIPIF1<0的導函數(shù)SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0為SKIPIF1<0上的“嚴格凸函數(shù)”,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0,所以③不正確.所以正確命題為:①②.故答案為:①②.5.【答案】2【分析】先對SKIPIF1<0求導,將SKIPIF1<0代入SKIPIF1<0即可求解.【詳解】由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:2.【點睛】本題主要考查導數(shù)的運算,屬于基礎題.6.【答案】SKIPIF1<0【分析】由條件求得當SKIPIF1<0時的函數(shù)解析式,求導,通過導數(shù)幾何意義求得在點SKIPIF1<0處的切線方程.【詳解】由題知,當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0則在點SKIPIF1<0的切線方程為:SKIPIF1<0,即SKIPIF1<0故答案為:SKIPIF1<07.【答案】SKIPIF1<0【分析】根據(jù)導數(shù)的幾何意義,先求切線斜率SKIPIF1<0,而直線SKIPIF1<0的斜率SKIPIF1<0,根據(jù)兩條直線垂直則SKIPIF1<0,代入即可得解.【詳解】由題意得SKIPIF1<0,則SKIPIF1<0,所以切線的斜率SKIPIF1<0.直線SKIPIF1<0的斜率SKIPIF1<0.因為兩直線相互垂直,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,則SKIPIF1<0,故該切線的方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<08.【答案】4【分析】將SKIPIF1<0看作兩點SKIPIF1<0,SKIPIF1<0之間距離的平方,然后根據(jù)幾何意義進行求解即可.【詳解】SKIPIF1<0看作兩點SKIPIF1<0,SKIPIF1<0之間距離的平方,點A在直線SKIPIF1<0上,點B在曲線SKIPIF1<0上,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,取點SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0最小值為4.故答案為:4.9.【答案】SKIPIF1<0【分析】求得函數(shù)導數(shù),由基本不等關系求得導數(shù)的最小值,即函數(shù)SKIPIF1<0所有切線中斜率最小值,進而求得切線方程.【詳解】由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時等號成立,則函數(shù)SKIPIF1<0所有切線中斜率最小為3,且過點SKIPIF1<0,則切線方程為SKIPIF1<0故答案為:SKIPIF1<010.【答案】SKIPIF1<0【分析】根據(jù)導數(shù)的幾何意義可求得切線方程,進而確定與坐標軸的交點坐標,從而求得面積.【詳解】切點SKIPIF1<0,SKIPIF1<0,切線:SKIPIF1<0,即SKIPIF1<0,與SKIPIF1<0軸交點SKIPIF1<0,與SKIPIF1<0軸交點SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0.11.【答案】SKIPIF1<0【分析】根據(jù)導數(shù)的幾何意義可知SKIPIF1<0,又SKIPIF1<0在切線上,可解得SKIPIF1<0的值,進而可求SKIPIF1<0的值.【詳解】由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又切線方程為:SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0.12.【答案】(1)SKIPIF1<0;(2)證明見解析.【分析】(1)求出函數(shù)的導函數(shù),再代入計算可得;(2)依題意即證SKIPIF1<0,即SKIPIF1<0,構造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導數(shù)說明其單調(diào)性與最值,即可得到SKIPIF1<0,從而得證;【詳解】解:(1)因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.(2)由(1)可得SKIPIF1<0即證SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0在SKIPIF1<0上是減函數(shù),在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0(SKIPIF1<0取等號).又令SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0在SKIPIF1<0上是增函數(shù),在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0(SKIPIF1<0時取等號).所以SKIPIF1<0,即SKIPIF1<0.1.【答案】D【分析】作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像,結合圖像可知直線SKIPIF1<0介于SKIPIF1<0與SKIPIF1<0軸之間,利用導數(shù)求出直線SKIPIF1<0的斜率,數(shù)形結合即可求解.【詳解】由題意可作出函數(shù)SKIPIF1<0的圖像,和函數(shù)SKIPIF1<0的圖像.由圖像可知:函數(shù)SKIPIF1<0的圖像是過原點的直線,當直線介于SKIPIF1<0與SKIPIF1<0軸之間符合題意,直線SKIPIF1<0為曲線的切線,且此時函數(shù)SKIPIF1<0在第二象限的部分的解析式為SKIPIF1<0,求其導數(shù)可得SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,故直線SKIPIF1<0的斜率為SKIPIF1<0,故只需直線SKIPIF1<0的斜率SKIPIF1<0SKIPIF1<0.故選:D【點睛】本題考查了不等式恒成立求出參數(shù)取值范圍,考查了數(shù)形結合的思想,屬于中檔題.2.【答案】D【分析】根據(jù)導數(shù)的幾何意義設出直線SKIPIF1<0的方程,再由直線與圓相切的性質(zhì),即可得出答案.【詳解】設直線SKIPIF1<0在曲線SKIPIF1<0上的切點為SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0的導數(shù)為SKIPIF1<0,則直線SKIPIF1<0的斜率SKIPIF1<0,設直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由于直線SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0,兩邊平方并整理得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍),則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故選:D.【點睛】本題主要考查了導數(shù)的幾何意義的應用以及直線與圓的位置的應用,屬于中檔題.3.【答案】D【分析】通過求導數(shù),確定得到切線斜率的表達式,求得SKIPIF1<0,將點的坐標代入直線方程,求得SKIPIF1<0.【詳解】詳解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,故選D.【點睛】本題關鍵得到含有a,b的等式,利用導數(shù)幾何意義和點在曲線上得到方程關系.4.【答案】A【詳解】試題分析:設SKIPIF1<0(不妨設SKIPIF1<0),則由導數(shù)的幾何意義易得切線SKIPIF1<0的斜率分別為SKIPIF1<0由已知得SKIPIF1<0切線SKIPIF1<0的方程分別為SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.分別令SKIPIF1<0得SKIPIF1<0又SKIPIF1<0與SKIPIF1<0的交點為SKIPIF1<0,故選A.考點:1.導數(shù)的幾何意義;2.兩直線垂直關系;3.直線方程的應用;4.三角形面積取值范圍.5.【答案】SKIPIF1<0【分析】結合導數(shù)的幾何意義可得SKIPIF1<0,結合直線方程及兩點間距離公式可得SKIPIF1<0,SKIPIF1<0,化簡即可得解.【詳解】由題意,SKIPIF1<0,則SKIPIF1<0,所以點SKIPIF1<0和點SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點睛】關鍵點點睛:解決本題的關鍵是利用導數(shù)的幾何意義轉(zhuǎn)化條件SKIPIF1<0,消去一個變量后,運算即可得解.6.【答案】SKIPIF1<0【分析】先驗證點在曲線上,再求導,代入切線方程公式即可.【詳解】由題,當SKIPIF1<0時,SKIPIF1<0,故點在曲線上.求導得:SKIPIF1<0,所以SKIPIF1<0.故切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.7.【答案】SKIPIF1<0.【分析】設出切點坐標,得到切線方程,然后求解方程得到橫坐標的值可得切點坐標.【詳解】設點SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,點A在曲線SKIPIF1<0上的切線為SKIPIF1<0,即SKIPIF1<0,代入點SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,考查函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,注意到SKIPIF1<0,故SKIPIF1<0存在唯一的實數(shù)根SKIPIF1<0,此時SKIPIF1<0,故點SKIPIF1<0的坐標為SKIPIF1<0.【點睛】導數(shù)運算及切線的理解應注意的問題:一是利用公式求導時要特別注意除法公式中分子的符號,防止與乘法公式混淆.二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點.8.【答案】4.【分析】將原問題轉(zhuǎn)化為切點與直線之間的距離,然后利用導函數(shù)確定切點坐標可得最小距離【詳解】當直線SKIPIF1<0平移到與曲線SKIPIF1<0相切位置時,切點Q即為點P到直線SKIPIF1<0的距離最小.由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即切點SKIPIF1<0,則切點Q到直線SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家樂福模式分析》課件
- 管理顧問工作總結
- 房地產(chǎn)行業(yè)客服經(jīng)驗分享
- 服裝行業(yè)的保安工作總結
- 中央財經(jīng)大學財務管理課件-風險與報酬
- 銀行求職自我介紹(15篇)
- 2023-2024年項目部治理人員安全培訓考試題(原創(chuàng)題)
- 《電子政務》課件
- 2024年公司項目部負責人安全教育培訓試題含答案(模擬題)
- 銷售個人年度工作總結(7篇)
- GB/T 32491-2016玻璃纖維增強熱固性樹脂管及管件長期靜水壓試驗方法
- 書名號測試的文檔
- 交大醫(yī)學院研究生現(xiàn)代免疫學基礎和進展《免疫學原理》考試重點
- 全文解讀改革開放簡史專題解讀
- 熱電廠工程燃煤系統(tǒng)施工方案
- 福建省南平市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 金融科技課件(完整版)
- 中國建筑史經(jīng)典題型
- 計算機信息系統(tǒng)分級保護方案
- 頂管施工技術全面詳解
- 公路工程質(zhì)量檢驗評定標準(交安部分)
評論
0/150
提交評論