版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省瑞安市重點(diǎn)名校2024年中考數(shù)學(xué)四模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,⊙O的半徑為6,直徑CD過(guò)弦EF的中點(diǎn)G,若∠EOD=60°,則弦CF的長(zhǎng)等于()A.6 B.6 C.3 D.92.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過(guò)()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q3.﹣23的相反數(shù)是()A.﹣8 B.8 C.﹣6 D.64.如圖,在△ABC中,點(diǎn)D在AB邊上,DE∥BC,與邊AC交于點(diǎn)E,連結(jié)BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S25.已知正多邊形的一個(gè)外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.66.下列關(guān)于x的方程一定有實(shí)數(shù)解的是()A. B.C. D.7.方程有兩個(gè)實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<18.等腰中,,D是AC的中點(diǎn),于E,交BA的延長(zhǎng)線于F,若,則的面積為()A.40 B.46 C.48 D.509.若正六邊形的邊長(zhǎng)為6,則其外接圓半徑為()A.3 B.3 C.3 D.610.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-140x12.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當(dāng)y>0時(shí),x的取值范圍是__.13.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.14.如圖,已知圓柱底面的周長(zhǎng)為,圓柱高為,在圓柱的側(cè)面上,過(guò)點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_(kāi)_____.15.一個(gè)布袋中裝有1個(gè)藍(lán)色球和2個(gè)紅色球,這些球除顏色外其余都相同,隨機(jī)摸出一個(gè)球后放回?fù)u勻,再隨機(jī)摸出一個(gè)球,則兩次摸出的球都是紅球的概率是_____.16.被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的九章算術(shù)是中國(guó)古代算法的扛鼎之作九章算術(shù)中記載:“今有五雀、六燕,集稱(chēng)之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問(wèn)燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱(chēng)之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問(wèn)雀、燕毎只各重多少斤?”設(shè)每只雀重x斤,每只燕重y斤,可列方程組為_(kāi)_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長(zhǎng).18.(8分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形為直角三角形?若存在,試求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.(8分)(定義)如圖1,A,B為直線l同側(cè)的兩點(diǎn),過(guò)點(diǎn)A作直線1的對(duì)稱(chēng)點(diǎn)A′,連接A′B交直線l于點(diǎn)P,連接AP,則稱(chēng)點(diǎn)P為點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”.(運(yùn)用)如圖2,在平面直坐標(biāo)系xOy中,已知A(2,3),B(﹣2,﹣3)兩點(diǎn).(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的等角點(diǎn),其中m>2,∠APB=α,求證:tanα2=n(3)若點(diǎn)P是點(diǎn)A,B關(guān)于直線y=ax+b(a≠0)的等角點(diǎn),且點(diǎn)P位于直線AB的右下方,當(dāng)∠APB=60°時(shí),求b的取值范圍(直接寫(xiě)出結(jié)果).20.(8分)矩形AOBC中,OB=4,OA=1.分別以O(shè)B,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E。當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.21.(8分)先化簡(jiǎn),再求值:(x﹣3)÷(﹣1),其中x=﹣1.22.(10分)如圖,己知AB是⊙C的直徑,C為圓上一點(diǎn),D是BC的中點(diǎn),CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結(jié)EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求23.(12分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱(chēng)軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).24.有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開(kāi)這兩把鎖,其余的鑰匙不能打開(kāi)這兩把鎖.現(xiàn)在任意取出一把鑰匙去開(kāi)任意一把鎖.(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;(2)求一次打開(kāi)鎖的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計(jì)算即可.【題目詳解】解:連接DF,∵直徑CD過(guò)弦EF的中點(diǎn)G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,
∴∠CFD=90°,
∴CF=CD?cos∠DCF=12×=,故選B.【題目點(diǎn)撥】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.2、C【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【題目詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長(zhǎng)度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過(guò)點(diǎn)P故選C.【題目點(diǎn)撥】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長(zhǎng)是解決此題的關(guān)鍵.3、B【解題分析】∵=﹣8,﹣8的相反數(shù)是8,∴的相反數(shù)是8,故選B.4、D【解題分析】
根據(jù)題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【題目詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時(shí),,此時(shí)3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項(xiàng)A不符合題意,選項(xiàng)B不符合題意.若1AD<AB,即時(shí),,此時(shí)3S1<S1+S△BDE<1S1,故選項(xiàng)C不符合題意,選項(xiàng)D符合題意.故選D.【題目點(diǎn)撥】考查了相似三角形的判定與性質(zhì),三角形相似的判定一直是中考考查的熱點(diǎn)之一,在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線構(gòu)造相似三角形.5、B【解題分析】
利用多邊形的外角和是360°,正多邊形的每個(gè)外角都是36°,即可求出答案.【題目詳解】解:360°÷36°=10,所以這個(gè)正多邊形是正十邊形.故選:B.【題目點(diǎn)撥】本題主要考查了多邊形的外角和定理.是需要識(shí)記的內(nèi)容.6、A【解題分析】
根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【題目詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個(gè)不相等的實(shí)數(shù)根,符合題意;
B.a(chǎn)x=3中當(dāng)a=0時(shí),方程無(wú)解,不符合題意;
C.由可解得不等式組無(wú)解,不符合題意;
D.有增根x=1,此方程無(wú)解,不符合題意;
故選A.【題目點(diǎn)撥】本題主要考查方程的解,解題的關(guān)鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.7、D【解題分析】當(dāng)k=1時(shí),原方程不成立,故k≠1,當(dāng)k≠1時(shí),方程為一元二次方程.∵此方程有兩個(gè)實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.8、C【解題分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點(diǎn),∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.9、D【解題分析】
連接正六邊形的中心和各頂點(diǎn),得到六個(gè)全等的正三角形,于是可知正六邊形的邊長(zhǎng)等于正三角形的邊長(zhǎng),為正六邊形的外接圓半徑.【題目詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長(zhǎng),即其外接圓半徑為1.故選D.【題目點(diǎn)撥】本題考查了正六邊形的外接圓的知識(shí),解題的關(guān)鍵是畫(huà)出圖形,找出線段之間的關(guān)系.10、B【解題分析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【題目詳解】①+②得:解得:故選:B.【題目點(diǎn)撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、85【解題分析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點(diǎn)的橫坐標(biāo)差的絕對(duì)值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|12、【解題分析】
根據(jù)拋物線的對(duì)稱(chēng)軸以及拋物線與x軸的一個(gè)交點(diǎn),確定拋物線與x軸的另一個(gè)交點(diǎn),再結(jié)合圖象即可得出答案.【題目詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對(duì)稱(chēng)軸為直線,與x軸的一個(gè)交點(diǎn)為(-1,0),∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),結(jié)合圖象可知,當(dāng)y>0時(shí),即x軸上方的圖象,對(duì)應(yīng)的x的取值范圍是,故答案為:.【題目點(diǎn)撥】本題考查了二次函數(shù)與不等式的問(wèn)題,解題的關(guān)鍵是通過(guò)圖象確定拋物線與x軸的另一個(gè)交點(diǎn),并熟悉二次函數(shù)與不等式的關(guān)系.13、3<d<7【解題分析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【題目詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關(guān)系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是圓與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握?qǐng)A與圓的位置關(guān)系.14、【解題分析】
要求絲線的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【題目詳解】解:如圖,把圓柱的側(cè)面展開(kāi),得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.
∵圓柱底面的周長(zhǎng)為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長(zhǎng)最小為2AC=4dm.
故答案為:4dm【題目點(diǎn)撥】本題考查了平面展開(kāi)-最短路徑問(wèn)題,圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”是解題的關(guān)鍵.15、【解題分析】
首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【題目詳解】畫(huà)樹(shù)狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【題目點(diǎn)撥】本題主要考查了求隨機(jī)事件概率的方法,解本題的要點(diǎn)在于根據(jù)題意畫(huà)出樹(shù)狀圖,從而求出答案.16、【解題分析】
設(shè)雀、燕每1只各重x斤、y斤,根據(jù)等量關(guān)系:今有5只雀、6只燕,分別聚集而且用衡器稱(chēng)之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【題目詳解】設(shè)雀、燕每1只各重x斤、y斤,根據(jù)題意,得整理,得故答案為【題目點(diǎn)撥】考查二元一次方程組得應(yīng)用,解題的關(guān)鍵是分析題意,找出題中的等量關(guān)系.三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析;(2)CD的長(zhǎng)為2.【解題分析】
(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據(jù)30°的性質(zhì)和勾股定理可求出EF和DF的長(zhǎng),在Rt△CEF中,根據(jù)勾股定理可求出CF的長(zhǎng),從而可求CD的長(zhǎng).【題目詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【題目點(diǎn)撥】本題考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),菱形的判定,含30°的直角三角形的性質(zhì),勾股定理.證明AD=BC是解(1)的關(guān)鍵,作EF⊥CD于F,構(gòu)造直角三角形是解(2)的關(guān)鍵.18、(1)y=﹣x2+2x+3;(2)見(jiàn)解析.【解題分析】
(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對(duì)稱(chēng)軸為直線x=1,設(shè)點(diǎn)Q的坐標(biāo)為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時(shí)斜邊三種情況求解即可.【題目詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對(duì)稱(chēng)軸上存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點(diǎn)B(3,0),點(diǎn)C(0,3),∴拋物線的對(duì)稱(chēng)軸為直線x=1,∴點(diǎn)A的坐標(biāo)為(﹣1,0),設(shè)點(diǎn)Q的坐標(biāo)為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當(dāng)AC為斜邊時(shí),10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點(diǎn)Q的坐標(biāo)為(1,1)或(1,2),當(dāng)AQ為斜邊時(shí),4+t2=10+t2﹣6t+10,解得,t=,∴點(diǎn)Q的坐標(biāo)為(1,),當(dāng)CQ時(shí)斜邊時(shí),t2﹣6t+10=4+t2+10,解得,t=,∴點(diǎn)Q的坐標(biāo)為(1,﹣),由上可得,當(dāng)點(diǎn)Q的坐標(biāo)是(1,1)、(1,2)、(1,)或(1,﹣)時(shí),使得以A、C、Q為頂點(diǎn)的三角形為直角三角形.【題目點(diǎn)撥】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),勾股定理及分類(lèi)討論的數(shù)學(xué)思想,熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,分三種情況討論是解(2)的關(guān)鍵.19、(1)C(2)n2(3)b<﹣735且b≠﹣2【解題分析】
(1)先求出B關(guān)于直線x=4的對(duì)稱(chēng)點(diǎn)B′的坐標(biāo),根據(jù)A、B′的坐標(biāo)可得直線AB′的解析式,把x=4代入求出P點(diǎn)的縱坐標(biāo)即可得答案;(2)如圖:過(guò)點(diǎn)A作直線l的對(duì)稱(chēng)點(diǎn)A′,連A′B′,交直線l于點(diǎn)P,作BH⊥l于點(diǎn)H,根據(jù)對(duì)稱(chēng)性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得m=2根據(jù)外角性質(zhì)可知∠A=∠A′=α2根據(jù)對(duì)稱(chēng)性質(zhì)可證明△ABQ是等邊三角形,即點(diǎn)Q為定點(diǎn),若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過(guò)定點(diǎn)Q,連OQ,過(guò)點(diǎn)A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得ON、NQ的長(zhǎng),即可得Q點(diǎn)坐標(biāo),根據(jù)A、B、Q的坐標(biāo)可求出直線AQ、BQ的解析式,根據(jù)P與A、B重合時(shí)b的值求出b的取值范圍即可.【題目詳解】(1)點(diǎn)B關(guān)于直線x=4的對(duì)稱(chēng)點(diǎn)為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當(dāng)x=4時(shí),y=32故答案為:C(2)如圖,過(guò)點(diǎn)A作直線l的對(duì)稱(chēng)點(diǎn)A′,連A′B′,交直線l于點(diǎn)P作BH⊥l于點(diǎn)H∵點(diǎn)A和A′關(guān)于直線l對(duì)稱(chēng)∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當(dāng)點(diǎn)P位于直線AB的右下方,∠APB=60°時(shí),點(diǎn)P在以AB為弦,所對(duì)圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設(shè)圓與直線y=ax+b(a≠0)的另一個(gè)交點(diǎn)為Q由對(duì)稱(chēng)性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等邊三角形∵線段AB為定線段∴點(diǎn)Q為定點(diǎn)若直線y=ax+b(a≠0)與圓相切,易得P、Q重合∴直線y=ax+b(a≠0)過(guò)定點(diǎn)Q連OQ,過(guò)點(diǎn)A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等邊三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴AMON∴20N∴ON=23,NQ=3,∴Q點(diǎn)坐標(biāo)為(3,﹣23)設(shè)直線BQ解析式為y=kx+b將B、Q坐標(biāo)代入得-3解得k=-3∴直線BQ的解析式為:y=﹣35設(shè)直線AQ的解析式為:y=mx+n,將A、Q兩點(diǎn)代入3=2m+n解得m=-33∴直線AQ的解析式為:y=﹣33x+7若點(diǎn)P與B點(diǎn)重合,則直線PQ與直線BQ重合,此時(shí),b=﹣73若點(diǎn)P與點(diǎn)A重合,則直線PQ與直線AQ重合,此時(shí),b=73又∵y=ax+b(a≠0),且點(diǎn)P位于AB右下方,∴b<﹣735且b≠﹣23或b>【題目點(diǎn)撥】本題考查對(duì)稱(chēng)性質(zhì)、相似三角形的判定與性質(zhì)、根據(jù)待定系數(shù)法求一次函數(shù)解析式及銳角三角函數(shù)正切的定義,熟練掌握相關(guān)知識(shí)是解題關(guān)鍵.20、(1)E(2,1);(2);(1).【解題分析】
(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CE,即可得出結(jié)論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.【題目詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點(diǎn),∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點(diǎn)的坐標(biāo)為1,∴E(2,1);(2)∵F點(diǎn)的橫坐標(biāo)為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標(biāo)為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過(guò)點(diǎn)E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點(diǎn)睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點(diǎn)坐標(biāo)公式,相似三角形的判定和性質(zhì),銳角三角函數(shù),求出CE:CF是解本題的關(guān)鍵.21、﹣x+1,2.【解題分析】
先將括號(hào)內(nèi)的分式通分,再將乘方轉(zhuǎn)化為乘法,約分,最后代入數(shù)值求解即可.【題目詳解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)?=﹣x+1,當(dāng)x=﹣1時(shí),原式=1+1=2.【題目點(diǎn)撥】本題考查了整式的混合運(yùn)算-化簡(jiǎn)求值,解題的關(guān)鍵是熟練的掌握整式的混合運(yùn)算法則.22、(1)證明見(jiàn)解析;(2)EH=【解題分析】
(1)由題意推出∠EHB=∠OCB,(2)結(jié)合△BHE~△BCO,推出BHBC【題目詳解】(1)證明:∵OD為圓的半徑,D是的中點(diǎn),∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是圓與相似三角形,解題的關(guān)鍵是熟練的掌握?qǐng)A與相似三角形.23、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時(shí),點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由見(jiàn)解析;(1)y=﹣x+1;P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【解題分析】【分析】(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)連接PC,交拋物線對(duì)稱(chēng)軸l于點(diǎn)E,由點(diǎn)A、B的坐標(biāo)可得出對(duì)稱(chēng)軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時(shí),由拋物線的對(duì)稱(chēng)性可得出此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,再根據(jù)點(diǎn)C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點(diǎn)P、M的坐標(biāo);當(dāng)t≠2時(shí),不存在,利用平行四邊形對(duì)角線互相平分結(jié)合CE≠PE可得出此時(shí)不存在符合題意的點(diǎn)M;(1)①過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點(diǎn)P的坐標(biāo)可得出點(diǎn)F的坐標(biāo),進(jìn)而可得出PF的長(zhǎng)度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長(zhǎng)度,利用面積法可求出P點(diǎn)到直線BC的距離的最大值,再找出此時(shí)點(diǎn)P的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 團(tuán)干部培訓(xùn)開(kāi)班儀式
- 滅火器實(shí)操培訓(xùn)
- 2.2大氣的受熱過(guò)程和大氣運(yùn)動(dòng)(第1課時(shí))(導(dǎo)學(xué)案)高一地理同步高效課堂(人教版2019必修一)
- 山東省青島市嶗山區(qū)2024-2025學(xué)年度第一學(xué)期期中檢測(cè)七年級(jí)語(yǔ)文試題(膠州、黃島聯(lián)考)(A4生用)
- 部編版2024-2025學(xué)年語(yǔ)文五年級(jí)上冊(cè)第4單元-單元測(cè)試卷(含答案)
- T-YNZYC 0122-2024 綠色藥材 仙茅組培苗生產(chǎn)技術(shù)規(guī)程
- 語(yǔ)文語(yǔ)法總結(jié)
- 水利工程經(jīng)濟(jì)學(xué)講稿
- 個(gè)人收入分配一輪復(fù)習(xí)
- 過(guò)年留職不回家協(xié)議書(shū)范文模板
- 2024年全國(guó)職業(yè)院校技能大賽中職組(嬰幼兒保育賽項(xiàng))省賽考試題庫(kù)(含答案)
- 期中 (試題) -2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 《深化文化體制機(jī)制改革》課件
- 【課件】慶祝新中國(guó)成立75周年主題班會(huì)課件
- WS∕T 391-2024 CT檢查操作規(guī)程
- 汽車(chē)售后服務(wù)接待試卷及答案2套
- 2024年舟山繼續(xù)教育公需課考試題庫(kù)
- 《大衛(wèi) 科波菲爾(節(jié)選)》《老人與?!仿?lián)讀教學(xué)設(shè)計(jì) 統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 一年級(jí)拼音默寫(xiě)表
- 第二單元 遵守社會(huì)規(guī)則 復(fù)習(xí)課件 部編版道德與法治八年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論