




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏自治區(qū)日喀則市南木林縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°2.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.3.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.4.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm5.如果兩圓只有兩條公切線,那么這兩圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.外離6.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.7.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.8.的相反數(shù)是A.4 B. C. D.9.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差10.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.911.如圖,在平面直角坐標(biāo)系中,線段AB的端點坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.512.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.16二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.14.將一張長方形紙片按如圖所示的方式折疊,BD、BE為折痕,若∠ABE=20°,則∠DBC為_____度.15.一組數(shù):2,1,3,,7,,23,…,滿足“從第三個數(shù)起,前兩個數(shù)依次為、,緊隨其后的數(shù)就是”,例如這組數(shù)中的第三個數(shù)“3”是由“”得到的,那么這組數(shù)中表示的數(shù)為______.16.當(dāng)x=_____時,分式值為零.17.二次函數(shù)的圖象與x軸有____個交點
.18.如圖,小聰把一塊含有60°角的直角三角板的兩個頂點放在直尺的對邊上,并測得∠1=25°,則∠2的度數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組.20.(6分)某商場計劃從廠家購進(jìn)甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍.具體情況如下表:甲種乙種丙種進(jìn)價(元/臺)120016002000售價(元/臺)142018602280經(jīng)預(yù)算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進(jìn)乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù).為獲得最大利潤,應(yīng)分別購進(jìn)甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?21.(6分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.22.(8分)如圖①,二次函數(shù)的拋物線的頂點坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標(biāo);若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.23.(8分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標(biāo).24.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.25.(10分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個面分別標(biāo)有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設(shè)游戲者從圈A起跳.小賢隨機(jī)擲一次骰子,求落回到圈A的概率P1.小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?26.(12分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標(biāo).27.(12分)為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進(jìn)行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】試題解析:∵AB∥CD,且∴在中,故選B.2、A【解題分析】
取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【題目詳解】如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.3、C【解題分析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.4、B【解題分析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【題目詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【題目點撥】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.5、C【解題分析】
兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【題目詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【題目點撥】本題考查了圓與圓的位置關(guān)系.熟悉兩圓的不同位置關(guān)系中的外公切線和內(nèi)公切線的條數(shù).6、C【解題分析】
根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應(yīng)邊的比相等得到代入求值即可.【題目詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【題目點撥】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.7、C【解題分析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖8、A【解題分析】
直接利用相反數(shù)的定義結(jié)合絕對值的定義分析得出答案.【題目詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【題目點撥】本題考查了絕對值和相反數(shù),正確把握相關(guān)定義是解題的關(guān)鍵.9、B【解題分析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進(jìn)入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【題目詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進(jìn)入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【題目點撥】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.10、B【解題分析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【題目詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.11、B【解題分析】
當(dāng)直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≤-3時直線y=kx-2與線段AB有交點;當(dāng)直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【題目詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當(dāng)直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當(dāng)直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【題目點撥】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當(dāng)k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當(dāng)k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.12、B【解題分析】
根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【題目詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【題目點撥】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強(qiáng),熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、25【解題分析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.14、1【解題分析】解:根據(jù)翻折的性質(zhì)可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案為1.點睛:本題考查了角的計算,根據(jù)翻折變換的性質(zhì),得出三角形折疊以后的圖形和原圖形全等,對應(yīng)的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解題的關(guān)鍵.15、-9.【解題分析】
根據(jù)題中給出的運算法則按照順序求解即可.【題目詳解】解:根據(jù)題意,得:,.故答案為:-9.【題目點撥】本題考查了有理數(shù)的運算,理解題意、弄清題目給出的運算法則是正確解題的關(guān)鍵.16、﹣1.【解題分析】試題解析:分式的值為0,則:解得:故答案為17、2【解題分析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進(jìn)行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【題目詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標(biāo)是零,即當(dāng)y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【題目點撥】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.18、35°【解題分析】分析:先根據(jù)兩直線平行,內(nèi)錯角相等求出∠3,再根據(jù)直角三角形的性質(zhì)用∠2=60°-∠3代入數(shù)據(jù)進(jìn)行計算即可得解.詳解:∵直尺的兩邊互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案為35°.點睛:本題考查了平行線的性質(zhì),三角板的知識,熟記平行線的性質(zhì)是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x<﹣1.【解題分析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關(guān)鍵.20、(1)商場至少購進(jìn)乙種電冰箱14臺;(2)商場購進(jìn)甲種電冰箱28臺,購進(jìn)乙種電冰箱14(臺),購進(jìn)丙種電冰箱38臺.【解題分析】
(1)設(shè)商場購進(jìn)乙種電冰箱x臺,則購進(jìn)甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據(jù)“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關(guān)于x的函數(shù)解析式,結(jié)合x的取值范圍,利用一次函數(shù)的性質(zhì)求解可得.【題目詳解】(1)設(shè)商場購進(jìn)乙種電冰箱x臺,則購進(jìn)甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進(jìn)乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當(dāng)x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進(jìn)甲種電冰箱28臺,購進(jìn)乙種電冰箱14(臺),購進(jìn)丙種電冰箱38臺.【題目點撥】本題主要考查一次函數(shù)的應(yīng)用與一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊(yùn)含的不等關(guān)系和相等關(guān)系,并據(jù)此列出不等式與函數(shù)解析式.21、(1)A種樹每棵2元,B種樹每棵80元;(2)當(dāng)購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解題分析】
(1)設(shè)A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設(shè)購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結(jié)合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進(jìn)行解答.【題目詳解】解:(1)設(shè)A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設(shè)購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設(shè)實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當(dāng)x=1時,y最小為18×1+73=8550(元).答:當(dāng)購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.22、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時,y=1∴點F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時,y=1;當(dāng)y=0時,x=-12∴點G坐標(biāo)為(-1,1),點H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時,y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標(biāo)為(-4,0)12分【解題分析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進(jìn)行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(biāo)(-4,0)23、(1)反比例函數(shù)解析式為y=;(2)C點坐標(biāo)為(2,1)【解題分析】
(1)由S△BOD=1可得BD的長,從而可得D的坐標(biāo),然后代入反比例函數(shù)解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標(biāo),再由待定系數(shù)法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標(biāo).【題目詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數(shù)解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標(biāo)為(1,8),設(shè)直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標(biāo)為(2,1).24、(1)見解析;(2)2π.【解題分析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【題目點撥】本題考查了切線的判定和性質(zhì):圓的切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度證件外借風(fēng)險評估與管理合同
- 洗衣店裝修簡易協(xié)議
- 二零二五年度商場家居用品柜臺租賃管理合同
- 2025年度建筑工程施工環(huán)境保護(hù)責(zé)任協(xié)議書
- 2025年度供應(yīng)鏈物流保密協(xié)議合同
- 文化產(chǎn)業(yè)借款融資居間合同
- 2025年度農(nóng)村土地承包經(jīng)營權(quán)流轉(zhuǎn)及農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整合作合同
- 2025年度企業(yè)兼職市場營銷人員勞務(wù)合同模板
- 2025年度房產(chǎn)贈與資產(chǎn)重組合同
- 2025年度人工智能系統(tǒng)維護(hù)與數(shù)據(jù)安全合同
- 31863:2015企業(yè)履約能力達(dá)標(biāo)全套管理制度
- 蘇教版數(shù)學(xué)二年級下冊《認(rèn)識時分》教案(無錫公開課)
- 軌道交通云平臺業(yè)務(wù)關(guān)鍵技術(shù)發(fā)展趨勢
- 打造金融級智能中臺的數(shù)據(jù)底座
- 工程合同管理教材(共202頁).ppt
- ANKYLOS機(jī)械并發(fā)癥處理方法
- 道路橋梁實習(xí)日記12篇
- 第十章運動代償
- 氬弧焊機(jī)保養(yǎng)記錄表
- 明星97iii程序說明書
- 《企業(yè)經(jīng)營統(tǒng)計學(xué)》課程教學(xué)大綱
評論
0/150
提交評論