2024屆寧夏平羅縣高三下期初考試數(shù)學試題_第1頁
2024屆寧夏平羅縣高三下期初考試數(shù)學試題_第2頁
2024屆寧夏平羅縣高三下期初考試數(shù)學試題_第3頁
2024屆寧夏平羅縣高三下期初考試數(shù)學試題_第4頁
2024屆寧夏平羅縣高三下期初考試數(shù)學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆寧夏平羅縣高三下期初考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20172.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為()A. B. C. D.3.已知定義在R上的偶函數(shù)滿足,當時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.64.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知集合,則集合()A. B. C. D.6.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1007.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.8.已知全集,集合,則=()A. B.C. D.9.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.64211.已知集合,,則()A. B.C.或 D.12.函數(shù)在上的圖象大致為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.14.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.15.已知實數(shù)滿足,則的最小值是______________.16.已知函數(shù)在定義域R上的導函數(shù)為,若函數(shù)沒有零點,且,當在上與在R上的單調性相同時,則實數(shù)k的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.18.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.20.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.21.(12分)在中,、、的對應邊分別為、、,已知,,.(1)求;(2)設為中點,求的長.22.(10分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.2、B【解題分析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【題目詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【題目點撥】該題主要考查三角函數(shù)的圖象和性質,根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練掌握函數(shù)圖象之間的變換關系,屬于簡單題目.3、B【解題分析】

由函數(shù)的性質可得:的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【題目詳解】由偶函數(shù)滿足,可得的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【題目點撥】本題主要考查了函數(shù)的性質,考查了數(shù)形結合的思想,掌握函數(shù)的性質是解題的關鍵,屬于中檔題.4、D【解題分析】

,不能得到,成立也不能推出,即可得到答案.【題目詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【題目點撥】本題主要考查了充分條件,必要條件的判定,屬于容易題.5、D【解題分析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【題目詳解】因,所以,故,又,,則,故集合.故選:D.【題目點撥】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.6、B【解題分析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【題目詳解】由題意,.故選:B.【題目點撥】本題考查程序框圖,讀懂程序的功能是解題關鍵.7、C【解題分析】

由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【題目詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【題目點撥】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題8、D【解題分析】

先計算集合,再計算,最后計算.【題目詳解】解:,,.故選:.【題目點撥】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.9、D【解題分析】

根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【題目詳解】設函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【題目點撥】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學生對于三角函數(shù)知識的綜合應用.10、A【解題分析】

設球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【題目詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【題目點撥】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c11、D【解題分析】

首先求出集合,再根據(jù)補集的定義計算可得;【題目詳解】解:∵,解得∴,∴.故選:D【題目點撥】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.12、C【解題分析】

根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【題目詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【題目點撥】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【題目詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【題目點撥】本題考查了歸納推理,意在考查學生的推理能力.14、【解題分析】

設圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【題目詳解】設圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【題目點撥】本題考查了圓柱的軸截面和表面積,考查了學生空間想象,轉化劃歸,數(shù)學運算的能力,屬于基礎題.15、【解題分析】

先畫出不等式組對應的可行域,再利用數(shù)形結合分析解答得解.【題目詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經(jīng)過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【題目點撥】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結合分析能力.16、【解題分析】

由題意可知:為上的單調函數(shù),則為定值,由指數(shù)函數(shù)的性質可知為上的增函數(shù),則在,單調遞增,求導,則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質即可求得的取值范圍.【題目詳解】若方程無解,則或恒成立,所以為上的單調函數(shù),都有,則為定值,設,則,易知為上的增函數(shù),,,又與的單調性相同,在上單調遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:【題目點撥】本題考查導數(shù)的綜合應用,考查利用導數(shù)求函數(shù)的單調性,正弦函數(shù)的性質,輔助角公式,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解題分析】

(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【題目詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【題目點撥】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.18、(1);(2)【解題分析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【題目詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【題目點撥】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.19、(1),;(2)【解題分析】

(1)依題意可知,直線的極坐標方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【題目詳解】(1)依題意可知,直線的極坐標方程為(),當時,聯(lián)立解得交點,當時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當時,無交點;綜上,曲線與直線的點極坐標為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【題目點撥】本題考查直線與曲線交點的極坐標、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.20、(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解題分析】

(1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據(jù)計數(shù)原理計算出每個所對應的概率,列出分布列計算期望即可.【題目詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論