2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題含解析_第1頁
2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題含解析_第2頁
2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題含解析_第3頁
2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題含解析_第4頁
2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省各市區(qū)十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.102.已知一元二次方程的兩個實數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.63.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.44.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.5.如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.806.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<77.計算(—2)2-3的值是()A、1B、2C、—1D、—28.下列交通標志是中心對稱圖形的為()A. B. C. D.9.肥皂泡的泡壁厚度大約是0.00000071米,數(shù)字0.00000071用科學記數(shù)法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣810.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間二、填空題(共7小題,每小題3分,滿分21分)11.已知關于x的不等式組只有四個整數(shù)解,則實數(shù)a的取值范是______.12.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.13.若關于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.14.在△ABC中,AB=AC,把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.15.請寫出一個比2大且比4小的無理數(shù):________.16.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.17.在一個不透明的空袋子里放入3個白球和2個紅球,每個球除顏色外完全相同,小樂從中任意摸出1個球,摸出的球是紅球,放回后充分搖勻,又從中任意摸出1個球,摸到紅球的概率是

____

.三、解答題(共7小題,滿分69分)18.(10分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.19.(5分)某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關系如圖所示.(1)求與的函數(shù)關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.20.(8分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.21.(10分)已知頂點為A的拋物線y=a(x-)2-2經(jīng)過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.22.(10分)學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經(jīng)過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統(tǒng)計圖和不完整的統(tǒng)計表(滿分10分,得分均為整數(shù)).根據(jù)以上信息回答下列問題:訓練后學生成績統(tǒng)計表中n,并補充完成下表:若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學生訓練后比訓練前達到優(yōu)秀的人數(shù)增加了多少?經(jīng)調(diào)查,經(jīng)過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.23.(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.24.(14分)如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.2、B【解析】

根據(jù)根與系數(shù)的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.3、C【解析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.4、C【解析】

結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.5、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.6、B【解析】

利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數(shù)值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關于x的一元二次方程是解題的關鍵.7、A【解析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數(shù)的加法、乘方法則。8、C【解析】

根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;

B、是中心對稱的圖形,但不是交通標志,不符合題意;

C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;

D、不是中心對稱的圖形,不合題意.

故選C.【點睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.9、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000071的小數(shù)點向或移動7位得到7.1,所以0.00000071用科學記數(shù)法表示為7.1×10﹣7,故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、A【解析】

直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取??;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個整數(shù)解,根據(jù)解集取出四個整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個整數(shù)解,即為1,0,?1,?2,可得出實數(shù)a的范圍為故答案為點睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個整數(shù)解覺得實數(shù)的取值范圍.12、②④⑤【解析】

根據(jù)不等式的性質(zhì)可確定①的對錯,根據(jù)多邊形的內(nèi)外角和可確定②的對錯,根據(jù)函數(shù)自變量的取值范圍可確定③的對錯,根據(jù)三角形中位線的性質(zhì)可確定④的對錯,根據(jù)正方形的性質(zhì)可確定⑤的對錯.【詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內(nèi)角和是其外角和的2倍,根據(jù)②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質(zhì)、多邊形的內(nèi)外角和、函數(shù)自變量的取值范圍、三角形中位線的性質(zhì)、正方形的性質(zhì),解答本題的關鍵是熟練掌握各知識點.13、30°【解析】試題解析:∵關于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.14、或.【解析】

MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對△ANC中的邊進行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設∠B=x°,則∠C=∠BAN=x°.1)當AN=NC時,∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當AN=AC時,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時不成立;3)當CA=CN時,∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.15、(或)【解析】

利用完全平方數(shù)和算術平方根對無理數(shù)的大小進行估算,然后找出無理數(shù)即可【詳解】設無理數(shù)為,,所以x的取值在4~16之間都可,故可填【點睛】本題考查估算無理數(shù)的大小,能夠判斷出中間數(shù)的取值范圍是解題關鍵16、4π﹣1【解析】分析:連結OC,根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,

∴∠COD=45°,

∴OC=CD=4,

∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積

==4π-1.故答案是:4π-1.點睛:考查了正方形的性質(zhì)和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.17、【解析】【分析】袋子中一共有5個球,其中有2個紅球,用2除以5即可得從中摸出一個球是紅球的概率.【詳解】袋子中有3個白球和2個紅球,一共5個球,所以從中任意摸出一個球是紅球的概率為:,故答案為.【點睛】本題考查了概率的計算,用到的知識點為:可能性等于所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質(zhì)得出EM=EF,在△BME中,由三角形的三邊關系得出BE+BM>EM即可得出結論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長FD至點M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三邊關系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延長AB至點N,使BN=DF,連接CN,如圖3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考點:全等三角形的判定和性質(zhì);三角形的三邊關系定理.19、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據(jù)圖象利用待定系數(shù)法可求得函數(shù)解析式,再根據(jù)蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據(jù)利潤=每千克的利潤×銷售量,可得關于x的二次函數(shù),利用二次函數(shù)的性質(zhì)即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【點睛】本題考查了一次函數(shù)的應用、二次函數(shù)的應用,弄清題意,找出數(shù)量間的關系列出函數(shù)解析式是解題的關鍵.20、(1)證明見解析;(2)CD=2.【解析】

(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結論;(2)由∠B的余弦值和(1)的結論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點睛】本題考查了直角三角形中的有關問題,主要考查了勾股定理,三角函數(shù)的有關計算.熟練掌握三角函數(shù)的概念是解題關鍵.21、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解析】

(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,代入點A,B的坐標得,解得,∴直線AB的表達式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設點P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點Q在AB上運動,過N′作直線RS∥y軸,交QR于點R,交NE的延長線于點S,設Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點Q在BC上運動,且Q在y軸左側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點Q在BC上運動,且點Q在y軸右側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點Q的坐標為(-,)或(-,2)或(,2).【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、翻折變換的性質(zhì)及勾股定理等知識點.22、(1)n=3,見解析;(2)125人;(3)P=【解析】

(1)利用強化訓練前后人數(shù)不變計算n的值;利用中位數(shù)對應計算強化訓練前的中位數(shù);利用平均數(shù)的計算方法計算強化訓練后的平均分;利用眾數(shù)的定義確定強化訓練后的眾數(shù);(2)用500分別乘以樣本中訓練前后優(yōu)秀的人數(shù)的百分比,然后求差即可;(3)畫樹狀圖展示所有20種等可能的結果數(shù),再找出所抽取的兩名同學恰好是一男一女的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)解:(1)n=20-1-3-8-5=3;強化訓練前的中位數(shù)7+82強化訓練后的平均分為120強化訓練后的眾數(shù)為8,故答案為3;7.5;8.3;8;(2)500×5+3(3)(3)畫樹狀圖為:共有20種等可能的結果數(shù),其中所抽取的兩名同學恰好是一男一女的結果數(shù)為12,所以所抽取的兩名同學恰好是一男一女的概率P=1220【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.23、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】

(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論