




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
關于緩和曲線最小長度的確定3.4.3緩和曲線的最小長度1.離心加速度的變化率離心加速度的變化率as:(離心加速度隨時間的變化率)在等速行駛的情況下:
滿足乘車舒適感的緩和曲線最小長度:我國公路計算規(guī)范一般建議as≤0.6
3.4緩和曲線
第2頁,共17頁,2024年2月25日,星期天2.駕駛員的操作及反應時間
緩和曲線不管其參數(shù)如何,都不可使車輛在緩和曲線上的行駛時間過短而使司機駕駛操縱過于匆忙。一般認為汽車在緩和曲線上的行駛時間至少應有3s《標準》按行駛時間不小于3s的要求制定了各級公路緩和曲線最小長度。《城規(guī)》制定了城市道路的最小緩和曲線長度,如表3-7。第3頁,共17頁,2024年2月25日,星期天3.超高漸變率超高漸變率——在超高過渡段上,路面外側逐漸抬高,將在外側形成一個附加坡度,這個附加坡度稱為超高漸變率。當圓曲線上的超高值一定時,這個附加坡度就取決于緩和段的長度。式中:B——旋轉軸至行車道(設路緣帶時為路緣帶)外側邊緣的寬度;
Δi——超高坡度與路拱坡度代數(shù)差(%);
p——超高漸變率,即旋轉軸線與行車道外側邊緣線之間的相對坡度。
第4頁,共17頁,2024年2月25日,星期天4.視覺條件在一般情況下,特別是當圓曲線半徑較大時,車速較高時,應該使用更長的緩和曲線?;匦€參數(shù)表達式:A2=R·Ls根據(jù)國外經(jīng)驗,當使用回旋線作為緩和曲線時,回旋線參數(shù)A和所連接的圓曲線應保持的關系式一般為:R/3≤A≤R根據(jù)經(jīng)驗,當R在100m左右時,通常取A=R;如果R小于100m,則選擇A等于R或大于R。反之,在圓曲線較大時,可選擇A在R/3左右,如R超過了3000m,A可以小于R/3。
回旋線過長β大于29°時,圓曲線與回旋線不能很好協(xié)調(diào)。適宜的緩和曲線角是β0=3°~29°。
第5頁,共17頁,2024年2月25日,星期天3.4.4緩和曲線的省略在直線和圓曲線間設置緩和曲線后,圓曲線產(chǎn)生了內(nèi)移,其位移值為p,
在Ls一定的情況下,p與圓曲線半徑成反比,當R大到一定程度時,p值將會很小。這時緩和曲線的設置與否,線形上已經(jīng)沒有多大差異。一般認為當p≤0.10時,即可忽略緩和曲線。如按3s行程計算緩和曲線長度時,若取p=0.10,則不設緩和曲線的臨界半徑為:
設計速度第6頁,共17頁,2024年2月25日,星期天3.4.4緩和曲線的省略在直線和圓曲線間設置緩和曲線后,圓曲線產(chǎn)生了內(nèi)移,其位移值為p,
在Ls一定的情況下,p與圓曲線半徑成反比,當R大到一定程度時,p值將會很小。這時緩和曲線的設置與否,線形上已經(jīng)沒有多大差異。一般認為當p≤0.10時,即可忽略緩和曲線。如按3s行程計算緩和曲線長度時,若取p=0.10,則不設緩和曲線的臨界半徑為:《標準》規(guī)定:當公路的平曲線半徑小于不設超高的最小半徑時,應設緩和曲線。四級公路可不設緩和曲線。第7頁,共17頁,2024年2月25日,星期天《規(guī)范》規(guī)定可不設緩和曲線的情況:(1)在直線和圓曲線間,當圓曲線半徑大于或等于《標準》規(guī)定的“不設超高的最小半徑”時;(2)半徑不同的同向圓曲線間,當小圓半徑大于或等于“不設超高的最小半徑”時;(3)小圓半徑大于表3.5.1中所列半徑,且符合下列條件之一時:
①小圓曲線按規(guī)定設置相當于最小回旋線長的回旋線時,其大圓與小圓的內(nèi)移值之差不超過0.10m。
②設計速度≥80km/h時,大圓半徑(R1)與小圓半徑(R2)之比小于1.5。③設計速度<80km/h時,大圓半徑(R1)與小圓半徑(R2)之比小于2。第8頁,共17頁,2024年2月25日,星期天例3-1:某平原區(qū)二級公路上有一平曲線,半徑為420m。試設計計算該平曲線的最小緩和曲線長度。解:(1)按離心加速度的變化率計算
由《標準》表2.0.5查得=80km/h(2)按駕駛員的操作及反應時間計算
(3)按超高漸變率計算由《標準》表3.0.2(5.2.1)可得:B=2×3.75=7.50m;由《規(guī)范》表7.5.3(5.4.6)查得:由《規(guī)范》表7.5.4(5.4.7)查得:p=1/150第9頁,共17頁,2024年2月25日,星期天(4)按視覺條件計算
LS=R=420綜合以上各項得:Lsmin=67.50m,最終取5的整倍數(shù)得到70m。
第10頁,共17頁,2024年2月25日,星期天1.敷設回旋線公式:
式中:l——回旋線上任意點m至緩和曲線終點的弧長(m)。x=q+Rsin
m(m)y=p+R(1-cos
m)(m)lm——圓曲線上任意點m至緩和曲線終點的弧長(m);
δ——lm所對應的圓心角(rad),。式中:
2.敷設帶有回旋線的圓曲線公式:3.4.4切線支距法敷設曲線計算方法000第11頁,共17頁,2024年2月25日,星期天例題:已知平原區(qū)某二級公路有一彎道,JD=K2+536.48,偏角α右=15°28′30″,半徑R=250m,緩和曲線長度Ls=70m要求:(1)計算曲線主點里程樁號;(2)計算曲線上每隔25m整樁號切線支距值。J=2T-L=2×116.565-232.054=1.077解:(1)曲線要素計算:第12頁,共17頁,2024年2月25日,星期天(2)主點里程樁號計算:以交點里程樁號為起算點:JD=K2+536.48ZH=JD–T=K2+536.48-116.565=K2+419.915HY=ZH+Ls=K2+419.915+70=K2+489.915QZ=ZH+L/2=K2+419.915+232.054/2=K2+535.942HZ=ZH+L=K2+419.915+232.054=K2+651.969YH=HZ–Ls=K2+651.97–70=K2+581.969
第13頁,共17頁,2024年2月25日,星期天(3)計算切線支距值:①緩和曲線段:
ZH=K2+419.915LCZ=K2+425,
l=2425-2419.915=5.085②圓曲線段:
HY=K2+489.915,YH=K2+581.969
LCZ=K2+500,lm=2500-2489.915=10.085x=q+Rsin
m=34.996+250sin4.3053=80.038(m)y=p+R(1-cos
m)=0.34+250(1-cos4.3053)=2.033(m)x=q+Rsin
m
y=p+R(1-cos
m)第14頁,共17頁,2024年2月25日,星期天③計算曲線上每隔25m整樁號的切線支距值:
列表計算曲線25m整樁號:ZH=K2+419.915,
K2+425,K2+450,K2+475,K2+500…第15頁,共17頁,2024年2月25日,星期天作業(yè):1.用級數(shù)展開法計算p、q的表達式。2.已知某一級公路(設計速度V=100Km/h),有一彎道,偏角α左=16°36′42″,半徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東水利職業(yè)學院《中藥鑒定學實驗二》2023-2024學年第一學期期末試卷
- 廈門華天涉外職業(yè)技術學院《學術研究及論文發(fā)表》2023-2024學年第二學期期末試卷
- 四川水利職業(yè)技術學院《平法識圖與鋼筋算量》2023-2024學年第二學期期末試卷
- 江西陶瓷工藝美術職業(yè)技術學院《內(nèi)燃機構造與原理》2023-2024學年第一學期期末試卷
- 湄洲灣職業(yè)技術學院《數(shù)學分析V》2023-2024學年第一學期期末試卷
- 江西傳媒職業(yè)學院《工程結構荷載與可靠度》2023-2024學年第二學期期末試卷
- 湖南財經(jīng)工業(yè)職業(yè)技術學院《有限元法與應用》2023-2024學年第二學期期末試卷
- 土方工程回填合同
- 建筑工程木工分包合同
- 房產(chǎn)土地使用權買賣合同
- 天津醫(yī)科大學眼科醫(yī)院招聘筆試真題2023
- 生物信息安全課件
- 《助產(chǎn)士的溝通技巧》課件
- 【MOOC】電視采訪報道-中國傳媒大學 中國大學慕課MOOC答案
- 醫(yī)院培訓課件:《外科手術部位感染預防與控制》
- 幼兒園小班主題《春天的小花園》課件
- 消防救援隊清潔用品配送服務投標方案(技術方案)
- 【MOOC】中央銀行學-江西師范大學 中國大學慕課MOOC答案
- 橙色國潮風中國非物質(zhì)文化遺產(chǎn)-剪紙主題
- 2024閥門檢驗和試驗作業(yè)指導書
- 餐館廚房經(jīng)營權承包合同
評論
0/150
提交評論