安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題含解析_第1頁
安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題含解析_第2頁
安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題含解析_第3頁
安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題含解析_第4頁
安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省巢湖市2024年數(shù)學(xué)八年級下冊期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列各式不能用平方差公式法分解因式的是()A.x2﹣4 B.﹣x2﹣y2 C.m2n2﹣1 D.a(chǎn)2﹣4b22.輪船從B處以每小時50海里的速度沿南偏東30°方向勻速航行,在B處觀測燈塔A位于南偏東75°方向上,輪船航行半小時到達(dá)C處,在C處觀測燈塔A位于北偏東60°方向上,則C處與燈塔A的距離是()海里.A. B. C.50 D.253.已知A,B兩地相距120千米,甲乙兩人沿同一條公路勻速行駛,甲騎自行車以20千米/時從A地前往B地,同時乙騎摩托車從B地前往A地,設(shè)兩人之間的距離為s(千米),甲行駛的時間為t(小時),若s與t的函數(shù)關(guān)系如圖所示,則下列說法錯誤的是()A.經(jīng)過2小時兩人相遇B.若乙行駛的路程是甲的2倍,則t=3C.當(dāng)乙到達(dá)終點時,甲離終點還有60千米D.若兩人相距90千米,則t=0.5或t=4.54.下列二次根式中,最簡二次根式為A. B. C. D.5.用反證法證明“在中,,則是銳角”,應(yīng)先假設(shè)()A.在中,一定是直角 B.在中,是直角或鈍角C.在中,是鈍角 D.在中,可能是銳角6.如圖所示,由已知條件推出結(jié)論錯誤的是()A.由∠1=∠5,可以推出AB∥CD B.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BC D.由AD∥BC,可以推出∠3=∠77.點P是圖①中三角形上一點,坐標(biāo)為(a,b),圖①經(jīng)過變化形成圖②,則點P在圖②中的對應(yīng)點P’的坐標(biāo)為()A. B. C. D.8.二元一次方程組的解中x、y的值相等,則k=()A.1 B.2 C.-1 D.-29.已知等腰三角形的一個角為72度,則其頂角為()A. B.C. D.或10.古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是黃金分割比(黃金分割比0.618)著名的“斷臂維納斯”便是如此.此外最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是黃金分割比.若某人滿足上述兩個黃金分割比例,且腿長為103cm,頭頂至脖子下端的長度為25cm,則其身高可能是()A.165cm B.170cm C.175cm D.180cm二、填空題(每小題3分,共24分)11.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1,),則點C的坐標(biāo)為_____.12.在平面直角坐標(biāo)系中,點在第________象限.13.如圖,在平行四邊形ABCD中,AD2AB;CF平分BCD交AD于F,作CEAB,垂足E在邊AB上,連接EF.則下列結(jié)論:①F是AD的中點;②S△EBC2S△CEF;③EFCF;④DFE3AEF.其中一定成立的是_____.(把所有正確結(jié)論的序號都填在橫線上)14.分解因式:m2-9m=______.15.如圖,在矩形中,分別是邊和的中點,,則的長為__________.16.已知關(guān)于x的分式方程有一個正數(shù)解,則k的取值范圍為________.17.如圖,正方形面積為,延長至點,使得,以為邊在正方形另一側(cè)作菱形,其中,依次延長類似以上操作再作三個形狀大小都相同的菱形,形成風(fēng)車狀圖形,依次連結(jié)點則四邊形的面積為___________.18.若平面直角坐標(biāo)系內(nèi)的點M在第四象限,且M到x軸的距離為1,到y(tǒng)軸的距離為2,則點M的坐標(biāo)為_________________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系,已知四邊形是矩形,且(0,6),(8,0),若反比例函數(shù)的圖象經(jīng)過線段的中點,交于點,交于點.設(shè)直線的解析式為.(1)求反比例函數(shù)和直線的解析式;(2)求的面積:(3)請直接寫出不等式的解集.20.(6分)如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.(1)求C點坐標(biāo);(2)求直線MN的解析式;(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標(biāo).21.(6分)如圖,正方形ABCD中,E是AD上任意一點,于F點,于G點.求證:.22.(8分)(1)因式分解:m3n-9mn;(2)解不等式組:.23.(8分)已知:一次函數(shù)y=(1﹣m)x+m﹣3(1)若一次函數(shù)的圖象過原點,求實數(shù)m的值.(2)當(dāng)一次函數(shù)的圖象經(jīng)過第二、三、四象限時,求實數(shù)m的取值范圍.24.(8分)某大型物件快遞公司送貨員每月的工資由底薪加計件工資兩部分組成,計件工資與送貨件數(shù)成正比例.有甲乙兩名送貨員,如果送貨量為x件時,甲的工資是y1(元),乙的工資是y2(元),如圖所示,已知甲的每月底薪是800元,每送一件貨物,甲所得的工資比乙高2元(1)根據(jù)圖中信息,分別求出y1和y2關(guān)于x的函數(shù)解析式;(不必寫定義域)(2)如果甲、乙兩人平均每天送貨量分別是12件和14件,求兩人的月工資分別是多少元?(一個月為30天)25.(10分)如圖,等邊三角形ABC的邊長是6,點D、F分別是BC、AC上的動點,且BD=CF,以AD為邊作等邊三角形ADE,連接BF、EF.(1)求證:四邊形BDEF是平行四邊形;(2)連接DF,當(dāng)BD的長為何值時,△CDF為直角三角形?(3)設(shè)BD=x,請用含x的式子表示等邊三角形ADE的面積.26.(10分)已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;(2)求△AOC的面積;(3)求不等式kx+b-<0的解集(直接寫出答案).

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

利用平方差公式的結(jié)構(gòu)特征判斷即可.【詳解】解:下列各式不能用平方差公式法分解因式的是-x2-y2,故選:B.【點睛】本題考查了用平方差公式進(jìn)行因式分解,熟練掌握是解題的關(guān)鍵.2、D【解析】

根據(jù)題中所給信息,求出∠BCA=90°,再求出∠CBA=45°,從而得到△ABC為等腰直角三角形,然后根據(jù)解直角三角形的知識解答.【詳解】根據(jù)題意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴∠A=45°,∴AB=AC.∵BC=50×0.5=25,∴AC=BC=25(海里).故選D.考點:1等腰直角三角形;2方位角.3、B【解析】

由圖象得到經(jīng)過2小時兩人相遇,A選項正確,由于乙的速度是=40千米/時,乙的速度是甲的速度的2倍可知B選項錯誤,計算出乙到達(dá)終點時,甲走的路程,可得C選項正確,當(dāng)0<t≤2時,得到t=0.5,當(dāng)3<t≤6時,得到t=4.5,于是得到若兩人相距90千米,則t=0.5或t=4.5,故D正確.【詳解】由圖象知:經(jīng)過2小時兩人相遇,A選項正確;甲的速度是20千米/小時,則乙的速度是=40千米/時,乙的速度是甲的速度的2倍,所以在乙到達(dá)終點之前,乙行駛的路程都是甲的二倍,B選項錯誤;乙到達(dá)終點時所需時間為=3(小時),3小時甲行駛3×20=60(千米),離終點還有120-60=60(千米),故C選項正確,當(dāng)0<t≤2時,S=-60t+120,當(dāng)S=90時,即-60t+120=90,解得:t=0.5,當(dāng)3<t≤6時,S=20t,當(dāng)S=90時,即20t=90,解得:t=4.5,∴若兩人相距90千米,則t=0.5或t=4.5,故D正確.故選B.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于看懂函數(shù)圖象,從函數(shù)圖像得出解題所需的必要條件.4、C【解析】

化簡得出結(jié)果,根據(jù)最簡二次根式的概念即可做出判斷.【詳解】解:、,故不是最簡二次根式;、,故不是最簡二次根式;、是最簡二次根式;、,故不是最簡二次根式。故選:.【點睛】此題考查了最簡二次根式,熟練掌握二次根式的化簡公式是解本題的關(guān)鍵.5、B【解析】

假設(shè)命題的結(jié)論不成立或假設(shè)命題的結(jié)論的反面成立,然后推出矛盾,說明假設(shè)錯誤,結(jié)論成立.【詳解】解:用反證法證明命題“在中,,則是銳角”時,應(yīng)先假設(shè)在中,是直角或鈍角.故選:B.【點睛】本題考查反證法,記住反證法的一般步驟是:①假設(shè)命題的結(jié)論不成立;②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;③由矛盾判定假設(shè)不正確,從而肯定原命題的結(jié)論正確.6、B【解析】

根據(jù)平行線的判定以及性質(zhì),對各選項分析判斷即可利用排除法求解.【詳解】解:A、由∠1=∠5,可以推出AB∥CD,故本選項正確;

B、由AB∥CD,可以推出∠4=∠8,故本選項錯誤;

C、由∠2=∠6,可以推出AD∥BC,故本選項正確;

D、由AD∥BC,可以推出∠3=∠7,故本選項正確.

故選B.【點睛】本題考查了平行線的判定與性質(zhì),找準(zhǔn)構(gòu)成內(nèi)錯角的截線與被截線是解題的關(guān)鍵.7、A【解析】

根據(jù)已知點的坐標(biāo)變換發(fā)現(xiàn)規(guī)律進(jìn)行求解.【詳解】根據(jù)題意得(2,0)變化后的坐標(biāo)為(1,0);(2,4)變化后的坐標(biāo)為(1,4);故P點(a,b)變化后的坐標(biāo)為故選A.【點睛】此題主要考查坐標(biāo)的變化,解題的關(guān)鍵是根據(jù)題意發(fā)現(xiàn)規(guī)律進(jìn)行求解.8、B【解析】

由x與y的值相等得到y(tǒng)=x,代入方程組中計算即可求出k的值.【詳解】解:由題意得:y=x,把y=x代入方程組,得,解得:,故選擇:B.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.9、D【解析】

分兩種情況討論:72度為頂角或為底角,依次計算即可.【詳解】分兩種情況:①72度為頂角時,答案是72°;②72度為底角時,則頂角度數(shù)為180°-72×2=36°.故選D.【點睛】本題主要考查了等腰三角形的性質(zhì),已知提供的度數(shù)并沒有說明其為底角還是頂角,所以需要分類討論解決.10、B【解析】

以腿長103cm視為從肚臍至足底的高度,求出身高下限;)以頭頂?shù)讲弊酉露碎L度25cm視為頭頂至咽喉長度求出身高上限,由此確定身高的范圍即可得到答案.【詳解】(1)以腿長103cm視為從肚臍至足底的高度,求出身高下限:,(2)以頭頂?shù)讲弊酉露碎L度25cm視為頭頂至咽喉長度求出身高上限:①咽喉至肚臍:cm,②肚臍至足底:cm,∴身高上限為:25+40+105=170cm,∴身高范圍為:,故選:B.【點睛】此題考查黃金分割,正確理解各段之間的比例關(guān)系,確定身高的上下限,即可得到答案.二、填空題(每小題3分,共24分)11、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(biāo)(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是學(xué)會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù),在由距離求坐標(biāo)時,需要加上恰當(dāng)?shù)姆?12、二【解析】

根據(jù)各象限內(nèi)點的坐標(biāo)特征解答.【詳解】解:點位于第二象限.

故答案為:二.【點睛】本題考查了各象限內(nèi)點的坐標(biāo)的符號特征以,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13、①③④.【解析】

由角平分線的定義和平行四邊形的性質(zhì)可證得CD=DF,進(jìn)一步可證得F為AD的中點,由此可判斷①;延長EF,交CD延長線于M,分別利用平行四邊形的性質(zhì)以及①的結(jié)論可得△AEF≌△DMF,結(jié)合直角三角形的性質(zhì)可判斷③;結(jié)合EF=FM,利用三角形的面積公式可判斷②;在△DCF和△ECF中利用等腰三角形的性質(zhì)、外角的性質(zhì)及三角形內(nèi)角和可得出∠DFE=3∠AEF,可判斷④,綜上可得答案.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠DFC=∠BCF,∵CF平分∠BCD,∴∠BCF=∠DCF,∴∠DFC=∠DCF,∴CD=DF,∵AD=2AB,

∴AD=2CD,∴AF=FD=CD,即F為AD的中點,故①正確;延長EF,交CD延長線于M,如圖,

∵四邊形ABCD是平行四邊形,

∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,又∵∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠ECD=∠AEC=90°,∵FM=EF,∴FC=FM,故③正確;∵FM=EF,∴S△EFC∵M(jìn)C>BE,∴S△BEC<2S設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故④正確;綜上可知正確的結(jié)論為①③④.

故答案為①③④.【點睛】本題以平行四邊形為載體,綜合考查了平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形的斜邊上的中線等于斜邊一半的性質(zhì)、三角形的內(nèi)角和和等腰三角形的判定和性質(zhì),思維量大,綜合性強(qiáng).解題的關(guān)鍵是正確作出輔助線,綜合運(yùn)用所學(xué)知識去分析思考;本題中見中點,延長證全等的思路是添輔助線的常用方法,值得借鑒與學(xué)習(xí).14、m(m-9)【解析】

直接提取公因式m即可.【詳解】原式=m(m-9).故答案為:m(m-9).【點睛】此題主要考查了提公因式法分解因式,關(guān)鍵是正確找出公因式.15、6【解析】

連接AC,根據(jù)三角形中位線性質(zhì)可知AC=2EF,最后根據(jù)矩形對角線相等進(jìn)一步求解即可.【詳解】如圖所示,連接AC,∵E、F分別為AD、CD的中點,EF=3,∴AC=2EF=6,∵四邊形ABCD為矩形,∴BD=AC=6,故答案為:6.【點睛】本題主要考查了三角形中位線性質(zhì)與矩形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.16、k<6且k≠1【解析】分析:根據(jù)解分式方程的步驟,可得分式方程的解,根據(jù)分式方程的解是正數(shù),可得不等式,解不等式,可得答案,并注意分母不分零.詳解:,方程兩邊都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,關(guān)于x的方程程有一個正數(shù)解,∴x=6-k>0,k<6,且k≠1,∴k的取值范圍是k<6且k≠1.故答案為k<6且k≠1.點睛:本題主要考查了解分式方程、分式方程的解、一元一次不等式等知識,能根據(jù)已知和方程的解得出k的范圍是解此題的關(guān)鍵.17、【解析】

如圖所示,延長CD交FN于點P,過N作NK⊥CD于點K,延長FE交CD于點Q,交NS于點R,首先利用正方形性質(zhì)結(jié)合題意求出AD=CD=AG=DQ=1,然后進(jìn)一步根據(jù)菱形性質(zhì)得出DE=EF=DG=2,再后通過證明四邊形NKQR是矩形得出QR=NK=,進(jìn)一步可得,再延長NS交ML于點Z,利用全等三角形性質(zhì)與判定證明四邊形FHMN為正方形,最后進(jìn)一步求解即可.【詳解】如圖所示,延長CD交FN于點P,過N作NK⊥CD于點K,延長FE交CD于點Q,交NS于點R,∵ABCD為正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面積為1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四邊形DEFG為菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴DQ=EQ=TK=NK=,F(xiàn)Q=FE+EQ=,∵∠NKT=∠KQR=∠FRN=90°,∴四邊形NKQR是矩形,∴QR=NK=,∴FR=FQ+QR=,NR=KQ=DK?DQ=,∴,再延長NS交ML于點Z,易證得:△NMZ?△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四邊形FHMN為正方形,∴正方形FHMN的面積=,故答案為:.【點睛】本題主要考查了正方形和矩形性質(zhì)與判定及與全等三角形性質(zhì)與判定的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.18、(2,-1)【解析】

可先根據(jù)到x軸的距離為點的縱坐標(biāo)的絕對值,到y(tǒng)軸的距離為點的橫坐標(biāo)的絕對值,進(jìn)而判斷出點的符號,得到具體坐標(biāo)即可.【詳解】∵M(jìn)到x軸的距離為1,到y(tǒng)軸的距離為2,∴M縱坐標(biāo)可能為±1,橫坐標(biāo)可能為±2,∵點M在第四象限,∴M坐標(biāo)為(2,-1).故答案為:(2,-1).【點睛】本題考查點的坐標(biāo)的確定;用到的知識點為:點到x軸的距離為點的縱坐標(biāo)的絕對值,到y(tǒng)軸的距離為點的橫坐標(biāo)的絕對值.三、解答題(共66分)19、(1),;(2)22.5;(3)或【解析】

(1)由點B、D的坐標(biāo)結(jié)合矩形的性質(zhì)即可得出點C的坐標(biāo),由中點的性質(zhì)即可得出點A的坐標(biāo),再結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可得出k值,由此即可得出反比例函數(shù)解析式;由點F的橫坐標(biāo)、點E的縱坐標(biāo)結(jié)合反比例函數(shù)解析式即可得出點E、F的坐標(biāo),再由點E、F的坐標(biāo)利用待定系數(shù)法即可求出直線EF的解析式;

(2)通過分割圖形并利用三角形的面積公式即可求出結(jié)論;

(3)觀察函數(shù)圖象,根據(jù)兩函數(shù)圖象的上下關(guān)系結(jié)合交點坐標(biāo)即可得出不等式的解集.【詳解】(1):(0,6),(8,0)∴(8,6)∴中點(4,3)∴∴∴設(shè),∴∴,∴,∴∴,,∴(2)=22.5(3)根據(jù)圖像可得或.【點睛】本題考查了矩形的性質(zhì)、反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式以及三角形的面積公式,本題屬于基礎(chǔ)題難度不大,解決該題型題目時,求出點的坐標(biāo),再結(jié)合點的坐標(biāo)利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.20、(1)C(0,1).(2)y=x+1.(3)P1(4,3),P2()P3(),P4().【解析】試題分析:(1)通過解方程x2﹣14x+42=0可以求得OC=1,OA=2.則C(0,1);(2)設(shè)直線MN的解析式是y=kx+b(k≠0).把點A、C的坐標(biāo)分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組即可求得它們的值;(3)需要分類討論:PB為腰,PB為底兩種情況下的點P的坐標(biāo).根據(jù)等腰三角形的性質(zhì)、兩點間的距離公式以及一次函數(shù)圖象上點的坐標(biāo)特征進(jìn)行解答.試題解析:(1)解方程x2-14x+42=0得x1=1,x2=2∵OA,OC(OA>OC)的長分別是一元二次方程x2-14x+42=0的兩個實數(shù)根∴OC=1,OA=2∴C(0,1)(2)設(shè)直線MN的解析式是y=kx+b(k≠0)由(1)知,OA=2,則A(2,0)∵點A、C都在直線MN上∴解得,∴直線MN的解析式為y=-x+1(3)∵A(2,0),C(0,1)∴根據(jù)題意知B(2,1)∵點P在直線MNy=-x+1上∴設(shè)P(a,--a+1)當(dāng)以點P,B,C三點為頂點的三角形是等腰三角形時,需要分類討論:①當(dāng)PC=PB時,點P是線段BC的中垂線與直線MN的交點,則P1(4,3);②當(dāng)PC=BC時,a2+(-a+1-1)2=14解得,a=±,則P2(-,),P3(,)③當(dāng)PB=BC時,(a-2)2+(-a+1-1)2=14解得,a=,則-a+1=-∴P4(,)綜上所述,符合條件的點P有:P1(4,3),P2(-,),P3(,),P4(,-)考點:一次函數(shù)綜合題.21、證明見解析【解析】

根據(jù)于F點,于G點,可得,根據(jù)四邊形ABCD是正方形,可得,再根據(jù),,可得:,在和中,由,可判定≌,根據(jù)全等三角形的性質(zhì)可得:.【詳解】證明:于F點,于G點,,四邊形ABCD是正方形,,,又,,在和中,,≌,,【點睛】本題主要考查正方形的性質(zhì)和全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握正方形的性質(zhì)和全等三角形的判定和性質(zhì).22、(1);(2).【解析】

(1)原式提取公因式,再利用平方差公式分解即可;(2)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】解:(1)原式;(2),由①得:,由②得:,則不等式組的解集為.【點睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.23、(1)m=1;(2)1<m<1.【解析】

根據(jù)一次函數(shù)的相關(guān)性質(zhì)進(jìn)行作答.【詳解】(1)∵一次函數(shù)圖象過原點,∴,解得:m=1(2)∵一次函數(shù)的圖象經(jīng)過第二、三、四象限,∴,∴1<m<1.【點睛】本題考查了一次函數(shù)的相關(guān)性質(zhì),熟練掌握一次函數(shù)的相關(guān)性質(zhì)是本題解題關(guān)鍵.24、(1)y1=20x+800;y2=18x+1200;(2)y1=8000元;y2=8760元.【解析】

(1)設(shè)y1關(guān)于x的函數(shù)解析式為y1=kx+800,將(200,4800)代入,利用待定系數(shù)法即可求出y1=20x+800;根據(jù)每送一件貨物,甲所得的工資比乙高2元,可設(shè)y2關(guān)于x的函數(shù)解析式為y2=18x+b,將(200,4800)代入,利用待定系數(shù)法即可求出y2=18x+1200;(2)根據(jù)甲、乙兩人平均每天送貨量分別是12件和14件,得出甲、乙兩人一個月送貨量分別是12×30=360件和14×30=420件.再把x=360代入y1=20x+800,x=420代入y2=18x+1200,計算即可求解.【詳解】(1)設(shè)y1關(guān)于x的函數(shù)解析式為y1=kx+800,將(200,4800)代入,得4800=200k+800,解得k=20,即y1關(guān)于x的函數(shù)解析式為y1=20x+800;∵每送一件貨物,甲所得的工資比乙高2元,而每送一件貨物,甲所得的工資是20元,∴每送一件貨物,乙所得的工資比乙高18元.設(shè)y2關(guān)于x的函數(shù)解析式為y2=18x+b,將(200,4800)代入,得4800=18×200+b,解得b=1200,即y2關(guān)于x的函數(shù)解析式為y2=18x+1200;(2)如果甲、乙兩人平均每天送貨量分別是12件和14件,那么甲、乙兩人一個月送貨量分別是12×30=360件和14×30=420件.把x=360代入y1=20x+800,得y1=20×360+800=8000(元);把x=420代入y2=18x+1200,得y2=18×420+1200=8760(元).【點睛】本題考查了一次函數(shù)的應(yīng)用,利用待定系數(shù)法求直線的解析式,以及代數(shù)式求值,讀懂題目信息,理解函數(shù)圖象是解題的關(guān)鍵.25、(1)見解析;(2)BD=2或4;(3)S△ADE=(x﹣3)2+(0≤x≤6)【解析】

(1):要證明四邊形BDEF是平行四邊形,一般采用對邊平行且相等來證明,因為已經(jīng)有了DB=CF,只要有△ABD全等△ACE,就能得到∠ACE=∠ABD=60°,CE=CF=EF=BD,再利用∠CFE=60°=∠ACB,就能平行,故第一問的證;(2):反推法,當(dāng)△CDF為直角三角形,又因為∠C=60°,當(dāng)∠CDF=90°時,可以知道2CD=CF,因為CF=BD,BD+CD=6,∴BD=4,當(dāng)∠CFD=90°時,可以知道CD=2CF,因為CF=BD,BD+CD=6,∴BD=2,故當(dāng)BD=2或4時,△CFD為直角三角形;(3):求等邊三角形ADE的面積,只要知道邊長就可求出,但是AD是變化的,所以我們采用組合面積求解,利用四邊形ADCE減去△CDE即可,又因為△ABD≌△ACE,所以四邊形ADCE的面積等于△ABD的面積,所以只需要求出△ABC的面積與△CDE即可,從而即可求面積.【詳解】解:(1)∵△ABC是等邊三角形,∴AB=BC,∠BAC=∠ABD=∠BCF=60°,∵BD=CF,∴△ABD≌△BCF(SAS),∴BD=CF,如圖1,連接CE,∵△ADE是等邊三角形,∴AD=AE,∠DAE=60°,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=60°,BD=CE,∴CF=CE,∴△CEF是等邊三角形,∴EF=CF=BD,∠CFE=60°=∠ACB,∴EF∥BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論