版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TeamControlNumber
55585
ProblemChosen
C
Forofficeuseonly
Forofficeuseonly
T1T2T3
T4
F1F2F3
F4
2017
MCM/ICM
SummarySheet
HighwayTrafficFlowModelwithSelf-DrivingVehiclesBasedonCellularAutomata
Summary
Withtheincreasinglackoftransportationcapacityandthegrowthofself-drivingvehicle(SDV)industry,anevaluationshouldbemadetofindouttheinfluenceontrafficwhenmoreandmorenon-self-driving-vehicles(NSDV)arereplacedbySDVswhilefewstudiesweredoneontheinteractionsbetweenSDVsandNSDVsandthecooperationsamongSDVsthemselves.
Wechoosecellularautomata(CA)modeltoevaluatethisproblemafteracarefulstudyandcom-parisonofdifferentkindsoftrafficflowmodelsinthepastfewdecades.Inordertotakethere-lationshipsofSDVsandNSDVsintoconsideration,weimprovethetraditionalCAmodelwhichemphasizesonstatusandrulesofchanges,byredesigningthesetwofactors.BeforebuildingaCAmodel,discretizationshouldbedonefirst.Bylearningtheaveragelength,speed,accelerationofrunningvehiclesonhighwayandthereactiontimeofhumanbeings,thesizeofacellandthetimelengthofaturnaredecided.Aftermakingassumptionsandsimplifyingtheproblem,twointer-relatedCAmodelsarecoveredinthispapertosimulatethechangeabletraffic:theFollowingModelandtheMultilaneTrafficModel.
TheFollowingModelisdesignedtosimulatehowavehiclefollowsanotherinasinglelane.RulesforNSDVsandSDVsaredifferentfromeachother:ForanNSDV,thedriver’sreactiontimeandpsychologicalcharacteristicsareconsidered;ForanSDV,therulesarebasedonthesharingofinformationwithotherSDVsandthejointdecisionmaking.Specifically,wecreateanewconception’SDV-Train’tosimulatethecooperationsamongSDVs.
TheMultilaneTrafficModelisbasedontheFollowingModel.Inthismodel,besidesfollowing,wetrytofindoutwhenandhowshouldavehiclechangealane.Twomainparametersareinvolvedinthismodel:Lane-ChangingMotivation(LCM)andLane-ChangingSecuirty(LCS).LCMdependsonwhetherchangingalanecanincreasethespeedandLCSshowsthewhetheritissafewhenlane-changing.OnlywhenbothLCMandLCSaresatisfied,mayavehiclechangeitslane.DetailsofthesetwoparametersvarybetweenSDVsandNSDVsconsideringthehugedifferencebetweenanautomaticcontrolsystemandahumandriver.Atwo-stepturningmethodisspeciallymadeforthismodelincorrespondencewiththerealworld.
Afterbuildingandmakingimprovementstothemodel,wewriteprogramstosimulateitandgethugevolumesofdata.WeanalyzeandvisualizethedatausingMatlab,showingstrongcorrelationsamongthreeparameters:theaveragespeed,thetrafficflowandthepercentageoftheSDVsrunningontheroad.TheincreasingnumberofSDVshasgreatinfluenceonthetrafficflowwhichalmosttripleswhenalltheNSDVsarereplacedbySDVs.Also,wefindthataspeciallaneforSDVs(SDVLane)shouldbebuiltwhenthepercentagereachesacertainlevel.
Basedonthecorrelationswegetinanalysis,weapplyourmodeltotheGreatSeattleareabycomparingtherealdataandthedatawegainfromsimulations.Wefindthatthelackoftrafficcapacityinthisareaishuge.AlthoughaddingSDVstothestreetcanreducethislack,itisnotacure.WebelieveacomprehensivemethodshouldbeappliedinthisareaincludingsettingaSDVLaneandbroadeninghighwaysinsomeparticularlynarrowparts.
Keywords:TrafficFlowModel;Self-DrivingVehicle;CellularAutomata
Team#55585
Contents
1
Introduction
1
2
SimplificationsandAssumptionsoftheProblem
1
1
2
3
3
2.1
2.2
2.3
2.4
FeaturesoftheHighway....................................
FeaturesofVehicles.......................................
SpecialFeaturesofNSDVs...................................
SpecialFeaturesofSDVs....................................
3
ChoiceandBasicSettingsoftheModel
3
3
4
4
3.1
3.2
3.3
ChoiceoftheModel.......................................
Discretization..........................................
BasicSettings ..........................................
4
DetailsoftheModel
4.1 FollowingModel........................................
4
4
5
6
7
9
9
10
10
12
4.1.1
4.1.2
4.1.3
Variables.........................................
FollowingRulesforNSDVs..............................
FollowingRulesforSDVs...............................
4.2 MultilaneTrafficModel ....................................
4.2.1
4.2.2
4.2.3
4.2.4
Variables.........................................
GeneralRulesofChangingLanes ..........................
Lane-ChangingRulesforNSDVs...........................
Lane-ChangingRulesforSDVs............................
5
AnalysisoftheResultsObtainedfromtheModelSimulation
13
13
15
16
5.1
5.2
5.3
ResultsofFollowingModel..................................
ResultsoftheMultilaneTrafficModel............................
SDVLane.............................................
6
ApplianceoftheModel
17
7
SensitivityAnalysis
7.1 ChoiceoftheParametersinLCP
18
18
18
...............................
7.2 DifferentSpeedLimit.
.....................................
8
Conclusions
19
9
Strengthsandweaknesses
9.1 Strengths.............................................
19
19
19
9.2 Weaknesses
...........................................
10
ALetter
20
Appendices
22
Team#55585
Page1of34
1 Introduction
Builtinthe20thcentury,manyhighwaysweredesignedtomeetthetransportationdemandsatthattime.Withtheboomofpopulation,urbanizationandeconomy,theneedoftransportationgrowsrapidlyinthenewcentury.Nowadays,highwaysintheGreatSeattleareacannolongermeetpeople’sneedandtrafficdelayscanbeseeneverywhereduringpeakhours.However,atthistimebuildingmoreroadsoraddinglanesinthisareaisextremelydifficultandexpensive.Inordertoincreasethecapacityofhighwayswithoutincreasingthenumberoflanesorroads,allowingself-drivingvehicles(SDVs)torunontheroadshouldbetakenintoconsideration.AmodelisneededtoevaluateSDVs’influenceonthetrafficflow.
Weproposedtodecomposethisproblemintothreeparts:
?
BuildamodelthatcansimulatethetrafficflowindifferentpercentageofSDVsandnon-self-drivingvehicles(NSDVs),numberoflanesandtrafficvolume.
Usethemodeltofindtheequilibriaortippingpointsandapplythemodeltotheprovideddata.
Basedonthedata,decidewhethertherearesomeconditionswherelanesshouldbededicatedtoSDVsandhowthepolicyshouldbechanged.
?
?
Firstly,weusecellularautomata(CA)tosimulatethetrafficflowwhenthereisonlyonelane.ThismodeliscalledtheFollowingModel.Inourmodel,werulethewayeachcellbehavesbysimplifyingthebehaviorsofvehiclesinreallife,likewhenavehiclewillslowdownorspeedup.WeusedifferentrulesforSDVsandNSDVsinourmodeltosimulatethecooperationsamongSDVs,interactionsbetweenSDVsandNSDVs,unpredictabilityofhuman-beingsandotherfactors.
BasedontheFollowingModelwebuilt,weputseparateparrellanestogetherandaddnewrulestosimulatethetrafficflowonamultilanehighway.ThisistheMultilaneTrafficModel.Aftersimplifyingthebehaviorsofrealvehicles’changinglanes,wemakerulesonwhenandhowacellmoveacrosslanes.Boththemotivationandthesafetyconcernareconsidered.Furthermore,wemakespecialrulestosimulatehumanbehaviorsandcooperationsamongSDVsincludingtheformofachainofSDVscalledtheSDV-Train.
Secondly,usingreal-lifeparameters,weruntheCAmodelandgetalargenumberofdata.Byanalyzingthedata,wefindseveralinterestingfeaturesofthemixedtrafficflow.Thecorrelationsamongtheaveragespeed,thetrafficflowandthepercentageofSDVsarestrong.Thesethreepa-rametersinfluenceeachotherintheirownway.Whentherearemanylanes,thesituationchangesandmoreinterestingphenomenaarefoundincludingtherelationshipsbetweentheefficiencyofeachlineandthepercentageofSDVs.Aftercomparison,wefindoutwhenandhowtobuildaspeciallaneforSDVs(SDVLane).
Thirdly,wecomparedourdatawithrealdataintheGreatSeattlearea.Wefindthatthereisindeedagreatlackoftrafficcapacityinthisarea.AfterchangingNSDVstoSDVs,thetrafficcapacityincreasesandeventriplesbutwebelievethetrafficsituationinthisareaisstillnotabundant.MoremethodsincludingbroadenafewpartsofthecurrenthighwayandsettingaSDVLaneshouldbetakenintoconsideration.
SimplificationsandAssumptionsoftheProblem
FeaturesoftheHighway
StraightRoad
Ahighwayinthismodelshouldbestraightoritsdegreeofcurvaturecanbeignored[1].A
vehicle’sspeedandotherconditionsdoesnotchangebecauseoftheshapeoftheroad.
Team#55585
Page2of34
2.
3.
4.
Thenumberoflanesshouldremainconstantforalongperiod.
Thehighwayisingoodconditionandthetrafficflowisnotaffectedbytheroughroad.
Nopedestrian,animaloranyformofobstaclecanbefoundonthehighwaysothetrafficflowwouldnotbeblocked.
Weatherchangesandilluminationdifferenceduringdifferenttimeisnottakenintoconsid-eration.
RulesforSDVLane
5.
6.
?
IfaSDVLaneisset,allSDVsshouldruninthislinewhilenoneoftheNSDVsmayruninit.
OnlyoneSDVLanecanbesetinourmodelconsideringthewidthofthehighwayislimited.
TheSDVLanewillbeplacedontheedgeoftheroadtopreventaseparationoflanesforNSDVs.
?
?
7.
8.
Thewidthofeachlaneis12feet.
Thespeedlimitofallhighwaysis60mph.
2.2
1.
FeaturesofVehicles
Inthismodel,onlyaveragelength,speed,accelerationandotherfeaturesofvehiclesareused.Althoughthereisagreatdiversityamongdifferentvehicles,thisdifferencecanbeignoredandtheresultofthemodelwouldnotbegreatlyaffected.
Allvehiclesobeytrafficlaws.Theviolationoftrafficlawsdoesgreatharmtothedriver’shealth,publicsecurityaswellasthespeedoftotaltrafficflow.Asaresult,thesecircumstanceswouldnotoccurinourmodel:
2.
?
?
?
?
avehicleexceedsthespeedlimit;avehiclestopsfornoreason;
avehiclerunsinanemergencylaneorontheshoulderfornoreason;avehiclechangesitslanebut
itsturninglightisnotturnedoninadvance;
thevehiclebehinditshowsitsintentiontochangethelane;twovehiclesrunsidebysideinonelane;
thedistancebetweentwovehiclesinthesamelaneistooshort.
?
?
3.
Trafficaccidentisnottakenintoconsideration.DetailsofitsinfluencewillbediscussedinSection9.2.
Averagedailytrafficflowisusedinthismodel.Trafficflowvariesindifferentdays,soanaveragelevelshouldbeusedtosimplifythismodel.
Hornisnotusedinourmodel.Onhighway,theinfluenceofahornislimitedbecausethedistancebetweentwovehiclesistoolongforacomplicatedsoundsignaltobeheardandunderstoodclearly.
4.
5.
Team#55585
Page3of34
2.3
1.
SpecialFeaturesofNSDVs
Uncertaintyoftheestimationofdistanceandspeed
Comparedwithcomputersystems,humandriversaremorelikelytomakemistakes,especiallywhenitcomestotheevaluationofdistanceandspeed.Therefore,humandriverstendtoslowdownthevehicleandchoosenottochangealanewhentheycannotestimatethedistanceclearlyevenwhenothervehiclesareoutoftheminimumsafedistance.
Longerreactiontime
Humandriversneedmoretimetodecelerateandstarttheirvehiclecomparedwithself-drivingonesespeciallyonthehighway[2].
2.
2.4
1.
SpecialFeaturesofSDVs
Shortreactiontime
SDVsarecontrolledbycomputersystemswhichrunfastandcanstayactiveforthewholetime.Withmoderntechnology,itiseasyforanSDVtoperceivetheoutsideworldandmakereactionsaccordinglyinashorttime.
CooperationsamongSDVs
ThesystemofanSDVisconnectedtotheInternet,thereforeinformationofalltheSDVsonaroadisshared.Withmoreinformation,anetworkdecision-makingsystemcanbebuiltwhichismentionedinpreviousstudies[3].
Maturetechnology
Thetechnologyofself-drivingismatureenoughandnomalfunctionofSDVs’guiding,drivinganddecision-makingsystemistakenintoconsiderationinthismodel.IfanaccidentdoeshappentoanSDV’ssystem,thisSDVshouldbelabeledasanNSDV.
InteractionsbetweenanNSDVandanSDV
AsdiscussedinSection3,forahumandriver,thereisnodifferencebetweenanSDVandanNSDVthatheorsheencountersonthestreet,forSDVswouldmakelessmistakesthanNSDVsandwouldnotcausemoretroubletohumandrivers.
2.
3.
4.
3 ChoiceandBasicSettingsoftheModel
3.1
ChoiceoftheModel
Inthepastfewdecades,withthedevelopmentoftransportation,agreatvarietyofmodelssimu-
latingthetrafficwerebuiltandimproved,amongwhichContinuousMediummodelandCAmodelarethemostpopularones.LighthillandWhithamfirstlyputforwardtheconceptofcontinuous
mediummodel,whileshortlyafterwardsRichardsalsoputforwarditindependently,thereforeitisalsonamedLWRmodel[4].LWRmodelmainlyfocusesonthemacroscopichomogeneityandsta-bilityofthetrafficflow.However,inthisproblem,thecooperationsbetweenSDVsandthereactionsbetweenanSDVandanNSDVmustbefurtherdiscussed,whichmakesithardforustoadapttheLWRmodel,becauseLWRmodelneglectstheinteractionsbetweendifferentparticlesintheflow.Aftercarefulcomparison,wefindthattraditionalCAmodelwithmodificationscanbeusedinthisproblem.
Inreallife,theactionofavehicletakenbybothhumandriversandcomputersystemsdependsonthestatusofthevehicleitselfandthesurroundingtraffic,whichissimilartotherulesofCA,whichisoriginallydiscoveredinthe1940sbyStanislawUlamandJohnvonNeumann[5].ThebasicideaofCAisthatitstartswithasetofcellswithstatus.Asimplesetofrulesarecreatedthatthe
Team#55585
Page4of34
statusareupdateddependingonthestatusofthecellanditsneighbors.Withmultipleiterations,CAmodelscansimulatethemovementofcomplexobjects.ChangesaremadetothestatusandtherulesoftheoriginalCAmodelinorder,ensuringthatthismodelcanworkforamixtureofSDVsandNSDVs.InordertomakeaCAmodel,discretizationshouldbedonefirsttoalmostallvariables.
3.2
Discretization
InourCAmodels,eachvehicleisregardedasacellwithitsownstatus.Besides,eachlaneisalso
dividedintocellsthatcancontainthevehicleswhiletimeisdividedintosmallunits(turns).
Sizeofacell
TheaveragelengthofvehicleinU.S.isabitlongerthan4meters.Aseverycellrepresentsavehicle,thelengthofthecellshouldbethesameastheaveragelength.Tosimplifythecalculation,weuse
1.
1cell=4m
(3.1)
2.
Timeunit
AstheresultsofTriggs,T.J.andHarris,W.G’sworkshows,theaveragereactiontimefordriversisaround1.5seconds[2].InoneturnoftheCAmodel,avehiclemakesoneaction,so
1.5secondsisagoodchoiceforourCAmodel’stimeunit.
1turn=1.5s
(3.2)
3.3
1.
BasicSettings
Speed
Thespeedlimitofroadis60mph,whichis10cellperturn,usingEqn.(3.1)andEqn.(3.2).BecauseCAmodelisdiscretized,thespeedisregardedasanaturalnumberfrom0to10inourmodel.
Acceleration
Accordingtotheassumption,thespeedofavehicleshouldchangestepbystep.Inourmodel,thespeedcanonlychange1cellinaturn.UseEqn.(3.1)andEqn.(3.2),theaccelerationofavehicleis2.67m/s2,whichisinlinewithdailyexperience.
MinimumSafeFollowingDistance(MinSFD)
Avehicleshouldnotgettooclosetothevehicleaheadtopreventaccidentwhenrunningonahighway.MinimumSafeFollowingDistance(MinSFD)isdesignedtomakesurethatanormalvehiclerunningatacertainspeedcanstopbeforecollision.
2.
3.
4 DetailsoftheModel
InourCAmodels,rulesaremadetosimulatevehicles’movement.Amongallkindsofmove-ments,twotypesofvehicle’sactionsarethemostimportantones:followingandlane-changing.TheFollowingModelandtheMultilaneTrafficModelaremadetosimulatethesetwotypesofactions.
4.1
FollowingModel
TheFollowingModelsimulatestheflowofvehiclesinasinglelaneonthehighway.Largequan-
titiesofsingle-lanetrafficflowmodelshavebeendeveloped,themostfamousoneofwhichisthe
NaSch(NS)model.KaiNagelandMichaelSchreckenbergbuiltthisCAmodelforhighwaytrafficin1992[6].Theirmodel’ssimulationsshowatransitionfromlaminartrafficflowtostart-stopwaves
Team#55585
Page5of34
withincreasingvehicledensity.Inreallife,SDVs’behaviorisdifferentfromthenon-self-drivingones,soourmodificationsfortheNaSchmodelaremainlyfocusedontheSDVs.
4.1.1 Variables
Table1:MainVariablesUsedintheFollowingModel
Variable
Defination
Unit
di
?di
DistancebetweenvehicleNo.iandthestartpointDistancebetweenvehicleNo.iandthevehicleaheadofit
cellcell
viai
SpeedofvehicleNo.i
WhethervehicleNo.iisacceleratingornot
cell/timestepunitless
biti
StatusofthebacklightofvehicleNo.iTypeofvehicleNo.i
unitlessunitless
MinSFDbetweentwovehicleswhenthelatterone’sspeedisv
Maximumdistancebetweentwovehicleswhenthelatterone’s
Dmin(v)
cell
Dmax(v)
P1,i
cell
unitless
speedisvandtheactionoftheformeronecanbeignoredPossibilityofahumandrivertodecelerateoutofcaution
vA
A
ΔdA
BackLightOn
bi=1
BackLightOff
bi=0
SDV
NSDV
Figure1:DiagramofMainVariablesUsedintheFollowingModel
MainvariablesusedintheFollowingModelareshowninTab.4.1.1andFig.1.Specifically,Eqn.(4.3)showsthefunctionsforthestatusofthebacklightandthevehicletypeseparately:
{
0,
1,
0,
1,
thebacklightofvehicleNo.iisoffthebacklightofvehicleNo.iison
vehicleNo.iisanNSDVvehicleNo.iisanSDV
bi=
{
(4.3)
ti=
ForanNSDV,nolightsignalshowswhetheritisacceleratingornot,whichparameteraiindicates.However,thisinformationissharedamongself-drivingones,whichiswhatEqn.(4.4)shows:
{
0, vehicleNo.iisnotaccelerating
ai=
(4.4)
1, vehicleNo.iisaccelerating
A
vA
B vB
C
vC
DvD
Team#55585
Page6of34
4.1.2
?
FollowingRulesforNSDVs
Deceleration
Aswediscussedinpart1andpart2ofSection2.4,humandriverneedmoretimetoreactandtheysometimeschoosetoslowdowntomaintainalongerfollowingdistanceoutofcaution.InthisFollowingModel,ifvehicleNo.iisNon-Self-Driving,apossibilityfunctionP1,iismadeforittosimulatethetwofactorsmentionedabove.ForanNSDVA,Eqn.(4.5)showsthefunction,inwhichBrepresentsthefirstvehiclethatisinfrontofA.
P11,P12,P13,0,
bB=1∧?dA>Dmin(vA)∧?dA<Dmax(vA)bB=0∧?dA>Dmin(vA)∧?dA<Dmax(vA)vA=0
othercases
P1,A
(4.5)
=
Incalculation,weusetheresultsgotfromperviousworks[7][8]:
(4.6)
P11=0.94,P12=0.50,P13=0.20
Inshort,thereisarateforNSDVstodecelerateundercertaincircumstances.AsshowninLane1inFig.2,foranNSDVA,everyturnarandomnumberRbetween0and1isgivenintheFollowingModel,and:
P1,A?R?vA=vA?1,bA=1
Besidesthiseffect,ifthereisanothervehiclewithinvehicleA’sMinSFD,Ahastodecelerate
andturnitsbacklighton.Thatis:
?dA?Dmin(vA)?vA=vA?1,bA=1
AndthisisLane2inFig.2.
Dmax(vA)
Dmin(vA)
Deceleration
vA
Lane1
A
B
(P1,A
R)
Lane2
vA
Deceleration
A
B
vA
Acceleration
Lane3
A
B
vA
Lane4
Acceleration
A
B
Hold
vA
Lane5
A
B
(P1,A
R)
Figure2:FollowingRulesforNSDVs
?
Acceleration
IfNSDVAdoesnotdeceleratebecauseofPA,andvehicleBis
faraway,or
notdeceleratingandoutofA’sMinSFD
Team#55585
Page7of34
thenAwillaccelerate,whichareshownseparatelyinLane3andLane4inFig.2.Thatis:
P1,A<R∧?dA>Dmax(vA)∨bB=0∧?dA>Dmin(vA)
?vA=vA+1,bA=0
Hold
Onothercircumstances,anNSDVholdsitsspeed,whichisshowninLane5ofFig.2:
[OtherCircumstances]?bA=0.
(
))
(
4.1.3 FollowingRulesforSDVs
Accordingtothediscussioninpart1andpart2ofSection2.4,SDVshaveshortreactiontimeandtheycancooperatewitheachother.Consideringthatanaccidenthappensrightinfrontofastraightlineofvehicles,allvehiclesshoulddecelerateinordertokeeptheMinSFD.Iftheyarecontrolledbyhumanbeingswhosereactiontimecannotbeignored,vehicleswilldecelerateonebyonebutwithadelay.However,ifallvehiclesareself-drivingones,theycandecelerateatthesametime,thankstothecooperatingsystem.Itisthesamefortheaccelerationprocess,becauseaicanbeknownforallSDVs,whichismentionedinSection4.1.1.
AnotherfactoristhatthewaychangestocalculateminimumsafefollowingdistancebetweentwoSDVswhichonefollowsanotherclosely,becauseallSDVssharetheinformationofspeedandotherparametersoftheSDVsinfrontofthem,whichismentionedinpart2ofSection2.4.Asisalsoassumedinpart3ofSection2.4,malfunctionoftheself-drivingsystemisnottakenintoconsiderationinthismodel.ThetwoadjacentSDVscandecelerateatthesametimeifemergencyhappens,sothattheMinSFDforanSDVcanbecalculatedfollowingEqn.(4.7),inwhichtheBrakingDistanceoftheformercanberemoved.NocollisionbetweenSDVswillhappenwhenallinformationissharedanddecisionsaremadecooperatively.
BrakingDistanceE=Dmin(m(ax(vE?2,0))
)
(4.7)
(vA)=maxDmin(vA)?BrakingDistanceE+1,1
D
min(SDV?SDV)
InEqn.(4.7)EistheSDVaheadofA.
WiththechangeofDmin(SDV?SDV),thedistancebetweenSDVscanbeshortenedandtherefore
arowofpureSDVscanbeformed.WhenallthedistancesbetweentwoconsecutiveSDVsaretheir
Dmin(SDV?SDV),thischainofSDVscanbecalledaSDV-Train.ForanSDVA,ifitisinanSDV-
Train,letFbetheSDVinthefrontofthetrain.ThethreevehiclesinLane4fromFig.3formatypicalSDV-Train.
Dmax(vA)
Dmin(vA)
vA
B
Acceleration
A
Lane1
vA
A
C
Acceleration
Lane2
AvAvA
Acceleration
E
Lane3
Acceleration
(aF=1)
vA
A
Lane4
F
aSDV-Train
Figure3:FollowingRulesforSDVs:Acceleration
Team#55585
Page8of34
?
Acceleration
AnSDVacceleratesunder4conditions:
itfollowsavehicleB,andtheirdistanceislongerthanDmax(vA),thatis:
?DA?Dmax(vA)?vA=vA+1;bA=0;aA=1;
1.
whichisthesituationinLane1inFig.3;
itfollowsanNSDVC,whosebacklightisoffandtheirdistanceislongerthantheMinSFDofA,thatis:
tC=0∧bC=0∧?DA?Dmin(vA)?vA=vA+1;bA=0;aA=1;
2.
whichisthesituationinLane2inFig.3;
itfollowsanSDVE,andtheirdistanceislongerthantheDmin(SDV?SDV)ofA,thatis:
tE=1∧?DA>Dmin(SDV?SDV)(vA)?vA=vA+1;bA=0;aA=1;
whichisthesituationinLane3inFig.3;
itisina’SDV-Train’,andthefirstSDVFintrainaccelerates,thatis:
3.
4.
=1?vA=vA+1;bA=0;aA=1.
?DA
=Dmin(SDV?SDV)(vA)∧aF
whichisthesituationinLane4inFig.3.
?
Deceleration
Dmax(vA)
Dmin(vA)
Deceleration
vA
C
Lane1
A
AvAvA
Deceleration
Lane2
E
vA
Deceleration
A
F
Lane3
aSDV-Train
Figure4:FollowingRulesforSDVs:Deceleration
AnSDVdeceleratesunder3conditions:
1.itfollowsanNSDVC,andtheirdistanceisshorterthantheMinSFDofA,thatis:
tC=0∧?DA?Dmin(vA)?vA=vA?1;bA=1;aA=0;
whichisthesituationinLane1inFig.4;
2.itfollowsanSDVE,andtheirdistanceisshorterthantheDmin(SDV?SDV)ofA,thatis:
tE=1∧?DA?Dmin(SDV?SDV)(vA)?vA=vA?1;bA=1;aA=0;
whichisthesituationinLane2inFig.4;
Team#55585
Page9of34
3.itisina’SDV-Train’,andthefirstSDVFintraindecelerates,thatis:
=1?vA=vA?1;bA=1;aA=0.
?DA
=Dmin(SDV?SDV)(vA)∧bF
whichisthesituationinLane3inFig.4.
?
Hold
Onothercircumstances,anSDVholdsitsspeed:
[OtherCircumstances]?bA=0;aA=0.
TwodifferentsituationsareshowninFig.5:
Dmax(vA)
Dmin(vA)
Hold
Lane1
Hold
(aF=0)
Lane2
aSDV-Train
Figure5:FollowingRulesforSDVs:Hold
4.2
MultilaneTrafficModel
Onmultilanehighways,vehiclestendtostayonitsownlane,whichisthesameastheFollowing
ModelmentionedaboveinSection4.1.However,undercertaincircumstances,driverschangetheir
lanes.TheMultilaneTrafficModelisdesignedonthebasisoftheFollowingModeltosimulatethislane-changingaction[9].BecauseofSDVs’cooperationwitheachotherandtheformationofSDV-Trains,SDVs’rulesofchanginglanesvarywithNSDVs’.
4.2.1 Variables
Table2:AdditionalVariablesUsedintheMultilaneTrafficModel
Variable Defination
Unit
?di,j
ci
DistancebetweenvehicleNo.iandvehicleNo.jStatusoftheturninglightsofvehicleNo.i
cellunitless
NumberoflanewhichvehicleNo.iisonPossbilityofahumandriverofvehicleNo.i
unitless
li
P2,i
unitless
tochangethelanewhenconditionallows
BesidesvariableslistedinTab.4.1.1,additionalvariablesusedintheMultilaneTrafficModelarelistedinTab.4.2.1andFig.6.Specifically,Eqn.(4.8)showsthefunctionforthestatusofvehicleNo.i’sturninglights:
turninglightsofvehicleNo.iareoff
0,
ci=
1, therightturninglightofvehicleNo.iison
?1,theleftturninglightofvehicleNo.iison
(4.8)
A vA C
A vA
F
Team#55585
Page10of34
C
vC
lC=2
ΔdA,E
1
Lane
2
Lane
BothLightsOff
ci=0
RightLightOn
ci=1
LeftLightOn
ci=-1
Figure6:DiagramofAdditionalVariablesUsedintheMultilaneTrafficModel
4.2.2 GeneralRulesofChangingLanes
Asweassumedinpart2ofSection2.2,driversonlychangetheirlanewhennecessary:
Thevehicleonthesamelaneaheadisnotfarawayandisrunningmuchslower;
Thetrafficconditiononthelanebesideisbetter.
ThisiscalledLane-Changin
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆新疆維吾爾自治區(qū)喀什二中高三考前熱身數(shù)學(xué)試卷含解析
- 北京市門頭溝區(qū)市級(jí)名校2025屆高三二診模擬考試英語(yǔ)試卷含解析
- 云南省騰沖縣第一中學(xué)2025屆高三下學(xué)期第六次檢測(cè)英語(yǔ)試卷含解析
- 甘肅省武威市2025屆高三二診模擬考試英語(yǔ)試卷含解析2
- 福建省泉州市2025屆高三二診模擬考試英語(yǔ)試卷含解析
- 云南農(nóng)業(yè)大學(xué)附屬中學(xué)2025屆高三3月份第一次模擬考試英語(yǔ)試卷含解析
- 湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析
- 陜西省延安一中2025屆高考?jí)狠S卷英語(yǔ)試卷含解析
- 山西省晉中市平遙縣二中2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析
- 北京市西城區(qū)第三十一中學(xué)2025屆高三第三次測(cè)評(píng)英語(yǔ)試卷含解析
- Unit2Section A 1a-2b課件2024-2025學(xué)年人教版英語(yǔ)九年級(jí)全冊(cè)
- 《經(jīng)濟(jì)思想史》全套教學(xué)課件
- 2.2大氣受熱過(guò)程-以新疆番茄為例課件高中地理人教版(2019)必修一
- office操作技巧手冊(cè)系列-excel
- 2023-2024學(xué)年全國(guó)小學(xué)二年級(jí)下語(yǔ)文人教版期末考試試卷(含答案解析)
- 新質(zhì)生產(chǎn)力賦能高質(zhì)量發(fā)展的邏輯理路、關(guān)鍵著力點(diǎn)與實(shí)踐路徑
- 微積分試卷及規(guī)范標(biāo)準(zhǔn)答案6套
- 國(guó)家開(kāi)放大學(xué)電大專科《土地利用規(guī)劃》2023-2024期末試題及答案試卷代 1308
- 獨(dú)家采購(gòu)協(xié)議合同書
- 2024年安徽省中考數(shù)學(xué)試卷(含答案)
- 晶種法制備多元金屬納米晶體及燃料電池中的構(gòu)效關(guān)系研究
評(píng)論
0/150
提交評(píng)論