版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山西省洪洞縣重點名校中考二模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.122.下列因式分解正確的是A. B.C. D.3.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數(shù)是()A.0 B.1 C.2 D.34.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°5.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a36.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤7.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間8.如圖圖形中,是中心對稱圖形的是()A. B. C. D.9.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.910.如圖,若銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定二、填空題(共7小題,每小題3分,滿分21分)11.已知平面直角坐標系中的點A(2,﹣4)與點B關于原點中心對稱,則點B的坐標為_____12.函數(shù)y=中自變量x的取值范圍是___________.13.已知且,則=__________.14.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數(shù)的圖象上,則m的值為.15.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.16.如圖所示,在四邊形ABCD中,AD⊥AB,∠C=110°,它的一個外角∠ADE=60°,則∠B的大小是_____.17.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.三、解答題(共7小題,滿分69分)18.(10分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調(diào)查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調(diào)查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調(diào)查的學員共有人;在被調(diào)查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.19.(5分)中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開展“中國詩詞大賽”比賽,對全班同學成績進行統(tǒng)計后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖中的信息,回答下列問題:(1)本班有多少同學優(yōu)秀?(2)通過計算補全條形統(tǒng)計圖.(3)學校預全面推廣這個比賽提升學生的文化素養(yǎng),估計該校3000人有多少人成績良好?20.(8分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.21.(10分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側(cè)),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.22.(10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.求每張門票原定的票價;根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.23.(12分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.24.(14分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數(shù);拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關鍵.2、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.3、D【解析】
根據(jù)翻折變換的性質(zhì)分別得出對應角相等以及利用等腰三角形的性質(zhì)判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的性質(zhì)等知識,利用折疊前后對應角相等是解題關鍵.4、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、D【解析】
根據(jù)平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.6、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.7、D【解析】
尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【點睛】本題考查了二次根式的相關定義.8、D【解析】
根據(jù)中心對稱圖形的概念和識別.【詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.9、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內(nèi)錯角相等,等量代換得到一對同位角相等,進而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關鍵.10、A【解析】
直接利用圓周角定理結合三角形的外角的性質(zhì)即可得.【詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、(﹣2,4)【解析】
根據(jù)點P(x,y)關于原點對稱的點為(-x,-y)即可得解.【詳解】解:∵點A(2,-4)與點B關于原點中心對稱,
∴點B的坐標為:(-2,4).
故答案為:(-2,4).【點睛】此題主要考查了關于原點對稱點的性質(zhì),正確掌握橫縱坐標的關系是解題關鍵.12、x≥﹣且x≠1【解析】
試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.13、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關鍵是理解相似三角形的面積比等于相似比的平方.14、1【解析】
設反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【詳解】解:設反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數(shù)圖象上點的坐標特征.15、y=﹣1x+1.【解析】
由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.16、40°【解析】【分析】根據(jù)外角的概念求出∠ADC的度數(shù),再根據(jù)垂直的定義、四邊形的內(nèi)角和等于360°進行求解即可得.【詳解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案為40°.【點睛】本題考查了多邊形的內(nèi)角和外角,掌握四邊形的內(nèi)角和等于360°、外角的概念是解題的關鍵.17、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.三、解答題(共7小題,滿分69分)18、(1)50,10;(2)見解析.(3)16.8萬【解析】
(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總?cè)藬?shù)為50人;再由總?cè)藬?shù)減去參加“1科”,“2科”,“4科”課外輔導人數(shù)即可求出答案.(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數(shù)占比為10%,故參加“4科”課外輔導人數(shù)的有5人.(3)因為參加“1科”和“2科”課外輔導人數(shù)占比為,所以全市參與輔導科目不多于2科的人數(shù)為24×=16.8(萬).【詳解】解:(1)本次被調(diào)查的學員共有:15÷30%=50(人),在被調(diào)查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,在被調(diào)查者中參加“4科”課外輔導的有:50×10%=5(人),補全的條形統(tǒng)計圖如右圖所示;(3)24×=16.8(萬),答:參與輔導科目不多于2科的學生大約有16.8人.【點睛】本題考察了條形統(tǒng)計圖和扇形統(tǒng)計圖,關鍵在于將兩者結合起來解題.19、(1)本班有4名同學優(yōu)秀;(2)補圖見解析;(3)1500人.【解析】
(1)根據(jù)統(tǒng)計圖即可得出結論;(2)先計算出優(yōu)秀的學生,再補齊統(tǒng)計圖即可;(3)根據(jù)圖2的數(shù)值計算即可得出結論.【詳解】(1)本班有學生:20÷50%=40(名),本班優(yōu)秀的學生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學優(yōu)秀;(2)成績一般的學生有:40×30%=12(名),成績優(yōu)秀的有4名同學,補全的條形統(tǒng)計圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績良好.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的知識點.20、(1);y2=2250x;(2)甲、乙兩個商場的收費相同時,所買商品為6件;(3)所買商品為5件時,應選擇乙商場更優(yōu)惠.【解析】試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;(2)由收費相同,列出方程求解即可;(3)由函數(shù)解析式分別求出x=5時的函數(shù)值,即可得解試題解析:(1)當x=1時,y1=3000;當x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)當甲、乙兩個商場的收費相同時,2100x+1=2250x,解得x=6,答:甲、乙兩個商場的收費相同時,所買商品為6件;(3)x=5時,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所買商品為5件時,應選擇乙商場更優(yōu)惠.考點:一次函數(shù)的應用21、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出點A的坐標,根據(jù)勾股定理計算即可;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質(zhì)求出點C′的坐標,根據(jù)題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側(cè),∴A(﹣1,0),∵直線y=x+m經(jīng)過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經(jīng)過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數(shù)表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質(zhì)、拋物線與x軸的交點的求法是解題的關鍵.22、(1)1(2)10%.【解析】試題分析:(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據(jù)“按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元”建立方程,解方程即可;(2)設平均每次降價的百分率為y,根據(jù)“原定票價經(jīng)過連續(xù)二次降價后降為324元”建立方程,解方程即可.試題解析:(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據(jù)題意得,解得x=1.經(jīng)檢驗,x=1是原方程的根.答:每張門票的原定票價為1元;(2)設平均每次降價的百分率為y,根據(jù)題意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合題意,舍去).答:平均每次降價10%.考點:1.一元二次方程的應用;2.分式方程的應用.23、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質(zhì)、勾股定理等知識即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識即可求出BQ長.(4)要滿足∠AMB=40°,可構造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識,就可算出符合條件的DM長.【詳解】(1)①作AD的垂直平分線交BC于點P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當∠EQF=90°時,BQ的長為4+.(4)在線段CD上存在點M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,過點O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,G
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國際貨物買賣合同CIF術語
- 2024天津市勞動合同范本
- 2024裝飾工程勞務分包標準合同
- 2024年度企業(yè)管理系統(tǒng)升級合同
- 2024年企業(yè)咨詢服務提供合同
- 2024年度安置房買賣合同中的交易過程監(jiān)督
- 2024企業(yè)間貸款合同范文
- 2024建材訂貨合同范文
- 2024年度安徽省某地行政中心建筑施工合同
- 2024年度廣告制作合同:某廣告公司對客戶的廣告制作及標的廣告創(chuàng)意要求
- 雙喜公司雙喜世紀婚禮策劃活動
- 色貌與色貌模型
- (2021年)浙江省杭州市警察招考公安專業(yè)科目真題(含答案)
- 中國佛教文化課件
- 民用無人駕駛航空器飛行題庫(判斷100)
- 氣管插管術 氣管插管術
- DB32T 4301-2022《裝配式結構工程施工質(zhì)量驗收規(guī)程》(修訂)
- BIM工程師題庫500道及參考答案(完整版)
- SB/T 10412-2007速凍面米食品
- 材料力學06章13彎曲變形課件
- 煙草病蟲害圖片(修改)課件
評論
0/150
提交評論