版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省咸寧市馬橋中學2024年八年級下冊數(shù)學期末復(fù)習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,,,則()A.垂直平分 B.垂直平分C.平分 D.以上結(jié)論均不對2.菱形的對角線長分別為6和8,則該菱形的面積是()A.24 B.48 C.12 D.103.計算的結(jié)果為()A.1 B. C. D.04.小明統(tǒng)計了某校八年級(3)班五位同學每周課外閱讀的平均時間,其中四位同學每周課外閱讀時間分別是小時、小時、小時、小時,第五位同學每周的課外閱讀時間既是這五位同學每周課外閱讀時間的中位數(shù),又是眾數(shù),則第五位同學每周課外閱讀時間是()A.小時 B.小時 C.或小時 D.或或小時5.在平面直角坐標系中,把點A(1,﹣5)向上平移3個單位后的坐標是().A.(1,-2) B.(1,-8) C.(4,-5) D.(-2,-5)6.《代數(shù)學》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為52x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時,構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36A.6 B.35-3 C.35-2 D.35-37.課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),已知,∠ACB=90°,AC=BC,AB=1.如果每塊磚的厚度相等,磚縫厚度忽略不計,那么砌墻磚塊的厚度為()A. B. C. D.58.下列等式成立的是()A.?= B.=2 C.﹣= D.=﹣39.將一次函數(shù)y=4x的圖象向上平移3個單位長度,得到圖象對應(yīng)的函數(shù)解析式為()A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-310.如圖,正方形OABC的兩辺OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是()A.(1,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空題(每小題3分,共24分)11.花粉的質(zhì)量很小.一粒某種植物花粉的質(zhì)量約為0.000037毫克,那么0.000037毫克可用科學記數(shù)法表示為________毫克.12.如圖,在中,,,,為上一點,,將繞點旋轉(zhuǎn)至,連接,分別為的中點,則的最大值為_________.13.如圖是一種“羊頭”形圖案,其作法是:從正方形①開始,以它的一邊為斜邊,向外作等腰直角三角形,然后再以其直角邊為邊,分別向外作正方形②和②′,…依此類推,若正方形①的邊長為64m,則正方形⑨的邊長為________cm.14.端午期間,王老師一家自駕游去了離家170km的某地,如圖是他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象,當他們離目的地還有20km時,汽車一共行駛的時間是_____.15.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′.若∠CC′B′=32°,則∠B=__________.16.醫(yī)學研究發(fā)現(xiàn)一種新病毒的直徑約為0.000043毫米,這個數(shù)0.000043用科學記數(shù)法表為______________.17.直線y=3x-2不經(jīng)過第________________象限.18.甲、乙、丙、丁四位選手各10次射擊成績的平均數(shù)都是8環(huán),眾數(shù)和方差如下表,則這四人中水平發(fā)揮最穩(wěn)定的是________.選手甲乙丙丁眾數(shù)(環(huán))98810方差(環(huán)2)0.0350.0150.0250.27三、解答題(共66分)19.(10分)如圖,在平行四邊形中,以點為圓心,長為半徑畫弧交于點,再分別以點為圓心,大于二分之一長為半徑畫弧,兩弧交于點,連接并延長交于點,連接.(1)四邊形是__________;(填矩形、菱形、正方形或無法確定)(2)如圖,相交于點,若四邊形的周長為,求的度數(shù).20.(6分)如圖,在四邊形中,且,四邊形的對角線,相交于,點,分別是,的中點,求證:.21.(6分)先化簡再求值:,其中a=3.22.(8分)如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若AB=5,AE=8,則BF的長為______.23.(8分)如圖,在等腰△ABC中,∠CAB=90°,P是△ABC內(nèi)一點,PA=1,PB=3,PC=,將△APB繞點A逆時針旋轉(zhuǎn)后與△AQC重合.求:(1)線段PQ的長;(2)∠APC的度數(shù).24.(8分)如圖,將正方形ABCD折疊,使點C與點D重合于正方形內(nèi)點P處,折痕分別為AF、BE,如果正方形ABCD的邊長是2,那么△EPF的面積是_____.25.(10分)如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF⑴求證:四邊形AECF是平行四邊形;⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.26.(10分)已知T.(1)化簡T;(2)若正方形ABCD的邊長為a,且它的面積為9,求T的值.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
根據(jù)段垂直平分線的判定定由AC=AD得到點A在線段CD的垂直平分線上,由BC=BD得到點B在線段CD的垂直平分線上,而兩點確定一直線,所以可判斷AB垂直平分CD.【詳解】解:∵AC=AD,∴點A在線段CD的垂直平分線上,∵BC=BD,∴點B在線段CD的垂直平分線上,∴AB垂直平分CD.故選:B.【點睛】本題考查了線段垂直平分線的判定與性質(zhì):到線段兩端點的距離相等的點在這條線段的垂直平分線上;線段垂直平分線上任意一點,到線段兩端點的距離相等.2、A【解析】
由菱形的兩條對角線的長分別是6和8,根據(jù)菱形的面積等于對角線積的一半,即可求得答案.【詳解】解:∵菱形的兩條對角線的長分別是6和8,
∴這個菱形的面積是:×6×8=1.
故選:A.【點睛】此題考查了菱形的性質(zhì).菱形的面積等于對角線積的一半是解此題的關(guān)鍵.3、A【解析】
把分子根據(jù)完全平方公式化簡后與分母約分即可.【詳解】原式=.故選A.【點睛】本題考查了分式的約分,熟練掌握分式的基本性質(zhì)是解答本題的關(guān)鍵,本題也考查了完全平方公式.4、C【解析】
利用眾數(shù)及中位數(shù)的定義解答即可.【詳解】解:當?shù)谖逦煌瑢W的課外閱讀時間為4小時時,此時五個數(shù)據(jù)為4,4,5,8,10,眾數(shù)為4,中位數(shù)為5,不合題意;當?shù)谖逦煌瑢W的課外閱讀時間為5小時時,此時五個數(shù)據(jù)為4,5,5,8,10,眾數(shù)為5,中位數(shù)為5,符合題意;當?shù)谖逦煌瑢W的課外閱讀時間為8小時時,此時五個數(shù)據(jù)為4,5,8,8,10,眾數(shù)為8,中位數(shù)為8,符合題意;當?shù)谖逦煌瑢W的課外閱讀時間為10小時時,此時五個數(shù)據(jù)為4,5,8,10,10,眾數(shù)為10,中位數(shù)為8,不合題意;故第五位同學的每周課外閱讀時間為5或8小時.故答案為C.【點睛】本題考查了眾數(shù)及中位數(shù)的概念,解題的關(guān)鍵是根申請題意,并結(jié)合題意分類討論解答.5、A【解析】
讓橫坐標不變,縱坐標加3可得到所求點的坐標.【詳解】∵-5+3=-2,∴平移后的坐標是(1,-2),故選A.【點睛】本題考查了坐標與圖形變化-平移:在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度.(即:橫坐標,右移加,左移減;縱坐標,上移加,下移減.6、B【解析】
根據(jù)題意列方程,即x2+6x就是陰影部分的面積,用配方法解二次方程,取正數(shù)解即可.【詳解】解:由題意得:x2+6x=36,
解方程得:x2+2×3x+9=45,
(x+3)2=45∴x+3=35,或x+3=-35,∴x=35-3,或x=-35-3<0,∴該方程的正數(shù)解為:35-3,故答案為:B【點睛】本題考查了解一元二次方程,屬于模仿題型,正確理解題意是解題的關(guān)鍵.7、A【解析】
根據(jù)全等三角形的判定定理證明△ACD≌△CEB,進而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可【詳解】過點B作BF⊥AD于點F,設(shè)砌墻磚塊的厚度為xcm,則BE=2xcm,則AD=3xcm,∵∠ACB=90,∴∠ACD+∠ECB=90,∵∠ECB+∠CBE=90,∴∠ACD=∠CBE,在△ACD和△CEB中,,∴△ACD≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=5x,AF=AD?BE=x,∴在Rt△AFB中,AF2+BF2=AB2,∴25x2+x2=12,解得,x=(負值舍去)故選A.【點睛】本題考查的是勾股定理的應(yīng)用以及全等三角形的判定與性質(zhì),得出AD=BE,DC=CF是解題關(guān)鍵.8、B【解析】
利用二次根式的乘法法則對、進行判斷;利用二次根式的加減法對進行判斷;利用二次根式的性質(zhì)對進行判斷.【詳解】解:、原式,所以選項錯誤;、原式,所以選項正確;、原式,所以選項錯誤;、原式,所以選項錯誤.故選:.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.9、C【解析】
根據(jù)一次函數(shù)的平移特點即可求解.【詳解】∵將一次函數(shù)y=4x的圖象向上平移3個單位長度,∴得到圖象對應(yīng)的函數(shù)解析式為y=4x+3故選C.【點睛】此題主要考查一次函數(shù)的圖像,解題的關(guān)鍵是熟知一次函數(shù)的平移特點.10、C【解析】
根據(jù)題意,分順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況,求出點D′到x軸、y軸的距離,即可判斷出旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是多少即可.【詳解】解:因為點D(5,3)在邊AB上,
所以AB=BC=5,BD=5-3=2;
(1)若把△CDB順時針旋轉(zhuǎn)90°,
則點D′在x軸上,OD′=2,
所以D′(-2,0);
(2)若把△CDB逆時針旋轉(zhuǎn)90°,
則點D′到x軸的距離為10,到y(tǒng)軸的距離為2,
所以D′(2,10),
綜上,旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標為(-2,0)或(2,10).
故選C.【點睛】本題考查坐標與圖形變化-旋轉(zhuǎn),考查了分類討論思想的應(yīng)用,解答此題的關(guān)鍵是要注意分順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況.二、填空題(每小題3分,共24分)11、【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.000037毫克可用科學記數(shù)法表示為3.7×10-5毫克.故答案為:.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.12、+2【解析】
利用直角三角形斜邊上的中線等于斜邊的一半,可得CM的長,利用三角形中位線定理,可得MF的長,再根據(jù)當且僅當M、F、C三點共線且M在線段CF上時CF最大,即可得到結(jié)論.【詳解】解:如圖,取AB的中點M,連接MF和CM,
∵將線段AD繞點A旋轉(zhuǎn)至AD′,
∴AD′=AD=1,
∵∠ACB=90°,
∵AC=6,BC=2,
∴AB=.
∵M為AB中點,
∴CM=,
∵AD′=1.
∵M為AB中點,F(xiàn)為BD′中點,
∴FM=AD′=2.
∵CM+FM≥CF,
∴當且僅當M、F、C三點共線且M在線段CF上時,CF最大,
此時CF=CM+FM=+2.
故答案為:+2.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì)及直角三角形斜邊上的中線等于斜邊的一半,知道當且僅當M、F、C三點共線且M在線段CF上時CF最大是解題的關(guān)鍵.13、4【解析】
第一個正方形的邊長為64cm,則第二個正方形的邊長為64×cm,第三個正方形的邊長為64×()2cm,依此類推,通過找規(guī)律求解.【詳解】根據(jù)題意:第一個正方形的邊長為64cm;第二個正方形的邊長為:64×=32cm;第三個正方形的邊長為:64×()2cm,…此后,每一個正方形的邊長是上一個正方形的邊長的,所以第9個正方形的邊長為64×()9-1=4cm,故答案為4【點睛】本題是一道找規(guī)律的題目,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.14、2.25h【解析】
根據(jù)待定系數(shù)法,可得一次函數(shù)解析式,根據(jù)函數(shù)值,可得相應(yīng)自變量的值【詳解】設(shè)AB段的函數(shù)解析式是y=kx+b,y=kx+b的圖象過A(1.5,90),B(2.5,170)解得∴AB段函數(shù)的解析式是y=80x-30離目的地還有20千米時,即y=170-20=150km,當y=150時,80x-30=150解得:x=2.25h,故答案為:2.25h【點睛】此題考查函數(shù)的圖象,看懂圖中數(shù)據(jù)是解題關(guān)鍵15、77°【解析】
先根據(jù)旋轉(zhuǎn)的性質(zhì)得∠B=∠AB′C′,AC=AC′,∠CAC′=90°,則可判斷△ACC′為等腰直角三角形,所以∠ACC′=∠AC′C=45°,然后根據(jù)三角形外角性質(zhì)計算出∠AB′C′,從而得到∠B的度數(shù).【詳解】∵△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB′C′,∴∠B=∠AB′C′,AC=AC′,∠CAC′=90°,∴△ACC′為等腰直角三角形,∴∠ACC′=∠AC′C=45°,∴∠AB′C′=∠B′CC′+∠CC′B′=45°+32°=77°,∴∠B=77°.故答案為77°.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵在于利用三角形外角性質(zhì).16、4.3×10-5【解析】解:0.000043=.故答案為.17、二【解析】
根據(jù)已知求得k,b的符號,再判斷直線y=3x-2經(jīng)過的象限.【詳解】解:∵k=3>0,圖象過一三象限,b=-2<0過第四象限∴這條直線一定不經(jīng)過第二象限.故答案為:二【點睛】此題考查一次函數(shù)的性質(zhì),一次函數(shù)y=kx+b的圖象有四種情況:①當k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限,y的值隨x的值增大而增大;②當k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,y的值隨x的值增大而增大;③當k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限,y的值隨x的值增大而減?。虎墚攌<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限,y的值隨x的值增大而減小.18、乙【解析】
根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定,方差最小的為乙,所以這四人中水平發(fā)揮最穩(wěn)定的是乙.【詳解】解:由表可知:S乙2=0.015<S丙2=0.025<S甲2=0.035<S丁2=0.1.故四人中乙發(fā)揮最穩(wěn)定.故答案為:乙.【點睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.三、解答題(共66分)19、(1)菱形;(2)【解析】
(1)先根據(jù)四邊形ABCD是平行四邊形得出AD∥BC,再由AB=AF即可得出結(jié)論;
(2)先根據(jù)菱形的周長求出其邊長,再由BF=1得出△ABF是等邊三角形,據(jù)此可得出結(jié)論?!驹斀狻拷猓海?)∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∵AB=AF,
∴四邊形ABEF是菱形.故答案為:菱形(2)∵四邊形ABEF是菱形,且周長為40,
∴AB=AF=40÷4=1.
∵BF=1,
∴△ABF是等邊三角形,
∴∠ABF=60°,
∴∠ABC=2∠ABF=120°;故答案為:120°【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法及菱形的性質(zhì)是解答此題的關(guān)鍵.20、見解析【解析】
據(jù)平行四邊形的性質(zhì)對角線互相平分得出OA=OC,OB=OD,利用中點的意義得出OE=OF,從而利用平行四邊形的判定定理“對角線互相平分的四邊形是平行四邊形”判定BFDE是平行四邊形,從而得出BE=DF.【詳解】解:證明:連接BF、DE,如圖所示:∵,,∴四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,
∵E、F分別是OA、OC的中點,
∴OE=OA,OF=OC,
∴OE=OF,
∴四邊形BFDE是平行四邊形,
∴BE=DF.【點睛】本題考查了平行四邊形的基本性質(zhì)和判定定理的運用.性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形.21、,.【解析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后將a的值代入化簡后的式子即可解答本題.【詳解】原式====.當a=3時,原式==.【點睛】本題考查了分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.22、1【解析】
先由角平分線的定義和平行線的性質(zhì)得AB=BE=5,再利用等腰三角形三線合一得AH=EH=4,最后利用勾股定理得BH的長,即可求解.【詳解】解:如圖,∵AG平分∠BAD,∴∠BAG=∠DAG,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEB=∠DAG,∴∠BAG=∠AEB,∴AB=BE=5,由作圖可知:AB=AF,∠BAE=∠FAE,∴BH=FH,BF⊥AE,∵AB=BE∴AH=EH=4,在Rt△ABH中,由勾股定理得:BH=3∴BF=2BH=1,故答案為:1.【點睛】本題考查了平行四邊形的性質(zhì)、勾股定理、角平分線的作法和定義、等腰三角形三線合一的性質(zhì),熟練掌握平行加角平分線可得等腰三角形,屬于??碱}型.23、(1);(2)135°【解析】
(1)由性質(zhì)性質(zhì)得,AQ=AP=1,∠QAP=∠CAB=90°,由勾股定理得,PQ=.(2)由∠QAP=90°,AQ=AP,得∠APQ=45°,根據(jù)勾股定理逆定理得∠CPQ=90°,所以,∠APC=∠CPQ+∠APQ=135°.【詳解】解:(1)∵△APB繞點A旋轉(zhuǎn)與△AQC重合,∴AQ=AP=1,∠QAP=∠CAB=90°,∴在Rt△APQ中,PQ=.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB繞點A旋轉(zhuǎn)與△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=,CQ=3,CP=,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.【點睛】本題考核知識點:旋轉(zhuǎn)性質(zhì)和勾股定理.解題關(guān)鍵點:熟記旋轉(zhuǎn)性質(zhì)和勾股定理.24、【解析】
過P作PH⊥DC于H,交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下冊《買鮮花》課件版
- 2021屆浙江省寧波市九校高一上學期期末聯(lián)考數(shù)學試題(解析版)
- 人教版八年級上學期期中考試數(shù)學試卷-(含答案)
- 《風險投資方法》課件
- 2025年1月八省聯(lián)考高考綜合改革適應(yīng)性測試-高三化學(內(nèi)蒙古卷)
- 天津市和平區(qū)2023-2024學年高三上學期期末質(zhì)量調(diào)查英語試卷
- 醫(yī)藥行業(yè)前臺接待工作心得
- 家政服務(wù)保姆照顧技能培訓總結(jié)
- 環(huán)保行業(yè)美工工作總結(jié)
- 貴州省安順市紫云縣2021-2022學年九年級上學期期末化學試題
- 物業(yè)年會講話稿范文
- TCUWA40055-2023排水管道工程自密實回填材料應(yīng)用技術(shù)規(guī)程
- 2024年國家公務(wù)員考試《申論》真題(地市級)及答案解析
- 公眾號年終總結(jié)個人
- 私募股權(quán)投資基金績效考核制度
- 初三生活學習總結(jié)模板
- 2024-2025學年第一學期期中考試 初一語文 試卷
- 單位內(nèi)部發(fā)生治安案件、涉嫌刑事犯罪事件的報告制度
- 2023年心理學基礎(chǔ)知識試題及答案
- 湖南省岳陽市2023-2024學年高三上學期教學質(zhì)量監(jiān)測(一)(一模) 英語 含解析
- 河南省道德與法治初二上學期期末試題與參考答案(2024-2025學年)
評論
0/150
提交評論