版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第頁中考數(shù)學復習《作圖題》專項檢測卷(附帶答案)學校:___________班級:___________姓名:___________考號:___________類型一尺規(guī)作圖1.在《阿基米德全集》中的《引理集》中記錄了古希臘數(shù)學家阿基米德提出的有關(guān)圓的一個引理.如圖,已知eq\o(AB,\s\up8(︵)),C是弦AB上一點,請你根據(jù)以下步驟完成這個引理的作圖過程.(1)尺規(guī)作圖(保留作圖痕跡,不寫作法):①作線段AC的垂直平分線DE,分別交eq\o(AB,\s\up8(︵))于點D,AC于點E,連接AD,CD;②以點D為圓心,DA長為半徑作弧,交eq\o(AB,\s\up8(︵))于點F(F,A兩點不重合),連接DF,BD,BF.(2)直接寫出引理的結(jié)論:線段BC,BF的數(shù)量關(guān)系.第1題圖2.尺規(guī)作圖(保留作圖痕跡,不寫作法):如圖,已知Rt△ABC.(1)在AC邊上求作點D,使DC與點D到AB的距離相等;(2)在AB邊上求作點E,使△ADE∽△ABC.第2題圖創(chuàng)新題3.下面是某數(shù)學興趣小組探究用不同方法作一個角的平分線的討論片段,請仔細閱讀,并完成相應(yīng)的任務(wù).小明:如圖①,(1)分別在射線OA,OB上截取OC=OD,OE=OF(點C,E不重合);(2)分別作線段CE,DF的垂直平分線l1,l2,交點為P,垂足分別為點G,H;(3)作射線OP,射線OP即為∠AOB的平分線.簡述理由如下:由作圖知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO.則∠POG=∠POH,即射線OP是∠AOB的平分線.圖①圖②第3題圖小軍:我認為小明的作圖方法很有創(chuàng)意,但是太麻煩了,可以改進如下,如圖②,(1)分別在射線OA,OB上截取OC=OD,OE=OF(點C,E不重合);(2)連接DE,CF,交點為P;(3)作射線OP,射線OP即為∠AOB的平分線.……任務(wù):(1)小明得出Rt△PGO≌Rt△PHO的依據(jù)是______(填序號);①SSS②SAS③AAS④ASA⑤HL(2)小軍作圖得到的射線OP是∠AOB的平分線嗎?請判斷并說明理由;(3)如圖③,已知∠AOB=60°,點E,F(xiàn)分別在射線OA,OB上,且OE=OF=eq\r(3)+1,點C,D分別為射線OA,OB上的動點,且OC=OD,連接DE,CF,交點為P,當∠CPE=30°時,直接寫出線段OC的長.第3題圖③
類型二無刻度直尺作圖1.如圖,在7×7的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,點A,B在格點上,每一個小正方形的邊長為1.(1)以AB為邊畫菱形,使菱形的其余兩個頂點都在格點上(畫出一個即可);(2)計算你所畫菱形的面積.第1題圖2.如圖,AB是半圓O的直徑,Rt△BOC的斜邊BC與半圓O相交于點D,且CD=BD,請僅用無刻度的直尺分別按下列要求作圖(保留作圖痕跡).(1)在圖①中,作∠CBO的平分線BE;(2)在圖②中,作△BCO的高OQ.第2題圖3.已知△ABC和△CDE都為正三角形,點B,C,D在同一直線上,請僅用無刻度的直尺完成下列作圖,不寫作法,保留作圖痕跡.(1)如圖①,當BC=CD時,作△ABC的中線BF;(2)如圖②,當BC≠CD時,作△ABC的中線BG.第3題圖4.下圖中4×4與6×6的方格都是由邊長為1的小正方形組成.圖①是繪成的七巧板圖案,它由7個圖形組成,請按以下要求選擇其中一個并在圖②、圖③中畫出相應(yīng)的格點圖形(頂點均在格點上).(1)選一個四邊形畫在圖②中,使點P為它的一個頂點,并畫出將它向右平移3個單位后所得的圖形;(2)選一個合適的三角形,將它的各邊長擴大到原來的eq\r(5)倍,畫在圖③中.第4題圖5.已知正方形ABCD的邊長為4個單位長度,點E是CD的中點,請僅用無刻度直尺按下列要求作圖(保留作圖痕跡).(1)在圖①中,將直線AC繞著正方形ABCD的中心順時針旋轉(zhuǎn)45°;(2)在圖②中,將直線AC向上平移1個單位長度.第5題圖6.圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點,點A、B、C均為格點.只用無刻度的直尺,分別在給定的網(wǎng)格中找一格點M,按下列要求作圖:(1)在圖①中,連接MA、MB,使MA=MB;(2)在圖②中,連接MA、MB、MC,使MA=MB=MC;(3)在圖③中,連接MA、MC,使∠AMC=2∠ABC.第6題圖參考答案類型一尺規(guī)作圖1.解:(1)尺規(guī)作圖如解圖所示;第1題解圖(2)結(jié)論:BC=BF.【解法提示】由作圖可得,DE是AC的垂直平分線,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,eq\o(AD,\s\up8(︵))=eq\o(FD,\s\up8(︵)),∴∠DBC=∠DBF,∵四邊形ABFD是圓的內(nèi)接四邊形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.2.解:(1)如解圖①,點D即為所求;第2題解圖①(2)如解圖②,點E即為所求.第2題解圖②3.解:(1)⑤;(2)射線OP是∠AOB的平分線,理由如下:如解圖①,連接EF,由作圖可知,OC=OD,OE=OF,又∵∠COF=∠DOE,∴△COF≌△DOE,∴∠OFC=∠OED.∵OF=OE,∴∠OFE=∠OEF,∴∠PFE=∠PEF,∴PF=PE.又∵OP=OP,OF=OE,∴△FOP≌△EOP,∴∠FOP=∠EOP,即射線OP是∠AOB的平分線;第3題解圖①(3)OC的長為2或2+eq\r(3).【解法提示】由于點C,D分別為射線OA,OB上的動點,點E,F(xiàn)為射線OA,OB上的定點,且∠CPE=30°,故可分以下兩種情況討論:①當點C在點E下方時,如解圖②,作射線OP,由(2)知,OP為∠AOB的平分線,∴∠AOP=∠BOP=30°.∵∠1=∠POF+∠OFP,∠2=∠DPF+∠DFP,∠CPE=∠DPF=∠POF=30°,∴∠1=∠2,由(2)知∠1=∠3,∵∠3=∠4,∴∠2=∠4=eq\f(1,2)×(180°-∠BOP)=75°,∴OP=OD,∠PFO=∠1-∠BOP=45°.過點P作PG⊥OB于點G,則PG=FG.設(shè)PG=FG=x,則OG=eq\f(PG,tan30°)=eq\r(3)x,∴OG+FG=eq\r(3)x+x=OF=eq\r(3)+1,解得x=1,∴PG=1,∴OP=2PG=2,∴OC=OD=OP=2;②當點C在點E上方時,如解圖③,作射線OP,過點P作PG⊥OB,同理可得OP=OE=eq\r(3)+1,則PG=GD=eq\f(\r(3)+1,2),∴OG=eq\f(PG,tan30°)=eq\f(3+\r(3),2),∴OC=OD=OG+GD=eq\f(3+\r(3),2)+eq\f(\r(3)+1,2)=2+eq\r(3).綜上所述,OC的長為2或2+eq\r(3).圖②圖③第3題解圖類型二無刻度直尺作圖1.解:(1)畫法不唯一,如解圖①或解圖②或解圖③所示;圖①圖②圖③第1題解圖(2)圖①菱形的面積=eq\f(1,2)×2×6=6;圖②菱形的面積=eq\f(1,2)×2eq\r(2)×4eq\r(2)=8;圖③菱形的面積=(eq\r(10))2=10.2.解:(1)如解圖①,BE即為所求;第2題解圖①(2)如解圖②,OQ即為所求.第2題解圖②3.解:(1)如解圖①,BF即為所求;第3題解圖①(2)如解圖②,BG即為所求;第3題解圖②4.解:(1)畫法不唯一,如解圖①或解圖②或解圖③或解圖④所示;圖①圖②圖③圖④第4題解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理招生業(yè)務(wù)合同
- 投資監(jiān)測委托合同
- 戶外運動木地板購銷協(xié)議
- 酒樓合作經(jīng)營合同
- 信用社借款合同樣式
- 房產(chǎn)買賣合同格式模板
- 涵管生產(chǎn)廠家采購合同
- 購銷合同國際旅游合作發(fā)展
- 預售房屋買賣合同條款
- 全面月嫂合同范本
- 開發(fā)思路方案
- 平面的投影完整版本
- 第八單元試題-2024-2025學年統(tǒng)編版語文四年級上冊
- 人教版五年級上冊數(shù)學期末考試試卷含答案
- 2024年大學試題(管理類)-薪酬管理考試近5年真題集錦(頻考類試題)帶答案
- 北師大版四年級上冊書法練習指導-教案
- 初中道德與法治全六冊復習提綱
- 2024年中級消防員考試題庫
- 高中人教版必修一全冊歷史期末總復習重要知識點歸納
- 英語B級單詞大全
- 2024年全國職業(yè)院校技能大賽高職組(護理技能賽項)備賽試題庫(含答案)
評論
0/150
提交評論