




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省三門峽市義馬二中2024屆十校聯(lián)考最后數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數(shù)據(jù)用科學記數(shù)法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人2.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形3.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.4.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.5.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.46.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.7.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個8.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.9.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h10.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.11.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小12.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.14.數(shù)學的美無處不在.數(shù)學家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調和的樂聲do、mi、so,研究15、12、10這三個數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個數(shù)為一組調和數(shù).現(xiàn)有一組調和數(shù):x,5,3(x>5),則x的值是.15.一個扇形的圓心角為120°,弧長為2π米,則此扇形的半徑是_____米.16.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內壁離杯底4cm的點B處有乙滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對的點A處,則螞蟻從外幣A處到達內壁B處的最短距離為_______.17.如圖,校園內有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).18.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結果保留π).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)20.(6分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.21.(6分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.22.(8分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.23.(8分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;(2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.24.(10分)如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).25.(10分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?26.(12分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.27.(12分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2536000人=2.536×106人.故選C.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關性質進行推理是解此題的關鍵.3、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負數(shù),兩個負數(shù)相比,絕對值大的反而?。虼耍讴?,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.4、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側,而在對稱軸的左側,y隨x得增大而減小,所以.總結可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質,解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質.5、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B6、B【解析】
連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關鍵是利用直徑得出∠ABD=65°.7、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.8、D【解析】
根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.9、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B10、B【解析】
觀察圖形,利用中心對稱圖形的性質解答即可.【詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【點睛】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關鍵.11、D【解析】
根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.12、D【解析】
根據(jù)中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0或-1?!窘馕觥坑捎跊]有交待是二次函數(shù),故應分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點。當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即。綜上所述,若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1。14、1.【解析】依據(jù)調和數(shù)的意義,有-=-,解得x=1.15、1【解析】
根據(jù)弧長公式l=nπr180,可得r=【詳解】解:∵l=nπr∴r=180lnπ=故答案為:1.【點睛】考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=nπr180(弧長為l,圓心角度數(shù)為n,圓的半徑為16、20cm.【解析】
將杯子側面展開,建立A關于EF的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側面展開,作A關于EF的對稱點A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.17、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關系,從而得出答案.18、3【解析】
過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、不滿足安全要求,理由見解析.【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.20、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對應角相等證得∠AED=∠CFB,則由平行線的判定證得結論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.21、(1)見解析;(2)見解析;(3)見解析,.【解析】
(1)直接利用網格結合勾股定理得出符合題意的答案;(2)直接利用網格結合平行四邊形的性質以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點睛】本題主要考查了等腰三角形的性質、平行四邊形的性質、勾股定理,正確應用勾股定理是解題的關鍵.22、.(1)見解析(2)【解析】
(1)根據(jù)網格結構找出點B、C旋轉后的對應點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據(jù)扇形的面積公式列式進行計算即可得解.【詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉過程中掃過的扇形的面積.23、(1)m≥﹣;(2)m=2.【解析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因為x1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,.靈活應用整體代入的方法計算.24、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解析】試題分析:首先過點C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數(shù)的應用.25、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結合A、B兩種文具的進價及總價,即可得出關于x的一元一次方程,解之即可得出結論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質,即可解決最值問題.【詳解】(1)設A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設購進A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一建fidic合同樣本
- 保暖套裝采購合同標準文本
- 傭金分紅合同標準文本
- 個人入股醫(yī)院合同標準文本
- 產業(yè)規(guī)劃編制合同樣本
- 事故車購車合同樣本
- 體育單招合同樣本
- 公寓車位出租合同樣本
- epc居間服務合同標準文本
- 2824勞務用工合同標準文本
- 藥學畢業(yè)論文5000字藥學論文的5000字集合16篇
- 小學語文整本閱讀指導課《城南舊事》教學案例
- (機械創(chuàng)新設計論文)
- GB/T 39802-2021城鎮(zhèn)供熱保溫材料技術條件
- GB/T 2792-2014膠粘帶剝離強度的試驗方法
- GB/T 215-2003煤中各種形態(tài)硫的測定方法
- GB/T 17492-2012工業(yè)用金屬絲編織網技術要求和檢驗
- GB/T 17207-2012電子設備用固定電容器第18-1部分:空白詳細規(guī)范表面安裝固體(MnO2)電解質鋁固定電容器評定水平EZ
- GB/T 16886.7-2001醫(yī)療器械生物學評價第7部分:環(huán)氧乙烷滅菌殘留量
- 國開電大《人員招聘與培訓實務》形考任務4國家開放大學試題答案
- 鐵路職工政治理論應知應會題庫
評論
0/150
提交評論