智能控制試卷及答案4套_第1頁
智能控制試卷及答案4套_第2頁
智能控制試卷及答案4套_第3頁
智能控制試卷及答案4套_第4頁
智能控制試卷及答案4套_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

附件1智能控制課程試題A附件1題號一二三四五六七總分分數(shù)合分人:復查人:一、填空題〔每空1分,共20分〕分數(shù)評卷人1.智能控制系統(tǒng)的根本類型有、、、、和。2.智能控制具有2個不同于常規(guī)控制的本質特點:和。3.一個理想的智能控制系統(tǒng)應具備的性能是、、、、等。4.人工神經(jīng)網(wǎng)絡常見的輸出變換函數(shù)有:和。5.人工神經(jīng)網(wǎng)絡的學習規(guī)那么有:、和。6.在人工智能領域里知識表示可以分為和兩類。二、簡答題:〔每題5分,共30分〕分數(shù)評卷人1.智能控制系統(tǒng)應具有的特點是什么?2.智能控制系統(tǒng)的結構一般有哪幾局部組成,它們之間存在什么關系?3.比擬智能控制與傳統(tǒng)控制的特點。4.神經(jīng)元計算與人工智能傳統(tǒng)計算有什么不同?5.人工神經(jīng)元網(wǎng)絡的拓撲結構主要有哪幾種?6.簡述專家系統(tǒng)與傳統(tǒng)程序的區(qū)別。三、作圖題:〔每圖4分,共20分〕分數(shù)評卷人1.畫出以下應用場合下適當?shù)碾`屬函數(shù):〔a〕我們絕對相信附近的e(t)是“正小”,只有當e(t)足夠遠離時,我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對于遠離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動,我們很快失去信心,而隨著e(t)從向右移動,我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學表達形式,并畫出隸屬函數(shù)圖。四、計算題:〔每題10分,共20分〕分數(shù)評卷人1.一個模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊含(usingproductopertor);2.設論域,且試求〔補集〕,〔補集〕五、試論述對BP網(wǎng)絡算法的改良?!补?0分〕分數(shù)評卷人附件1智能控制課程試題B附件1題號一二三四五六七總分分數(shù)合分人:復查人:一、填空題〔每空1分,共20分〕分數(shù)評卷人1.智能控制的研究對象具備的特點有:、和。2.智能控制系統(tǒng)的主要類型有:、、、、和。3.確定隸屬函數(shù)的方法大致有、和。4.國內(nèi)外學者提出了許多面向對象的神經(jīng)網(wǎng)絡控制結構和方法,從大類上看,較具代表性的有以下幾種:、和。5.在一個神經(jīng)網(wǎng)絡中,常常根據(jù)處理單元的不同處理功能,將處理單元分成有以下三種:、和。6.專家系統(tǒng)具有三個重要的特征是:、和。二、簡答題:〔每題5分,共30分〕分數(shù)評卷人智能控制有哪些應用領域?試舉例說明其工作原理。試說明智能控制的三元結構,并畫出展示它們之間關系的示意圖。模糊邏輯與隨機事件的聯(lián)系與區(qū)別。給出典型的神經(jīng)元模型。BP根本算法的優(yōu)缺點。專家系統(tǒng)的根本組成。三、作圖題:〔每圖4分,共20分〕分數(shù)評卷人1.畫出以下應用場合下適當?shù)碾`屬函數(shù):〔a〕隨著e(t)從向左移動,我們很快失去信心,而隨著e(t)從向右移動,我們較慢失去信心?!瞓〕我們相信附近的e(t)是“正大”,而對于遠離的e(t)我們很快失去信心;〔c〕我們絕對相信附近的e(t)是“正小”,只有當e(t)足夠遠離時,我們才失去e(t)是“正小”的信心;2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學表達形式,并畫出隸屬函數(shù)圖。四、計算題:〔每題10分,共20分〕分數(shù)評卷人1.一個模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-errorisnegsmallThenforceispossmall。均使用最小化操作表示蘊含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊含(usingproductopertor);2.設論域,且試求〔補集〕,〔補集〕五、試論述建立專家系統(tǒng)的步驟?!补?0分〕分數(shù)評卷人附件1智能控制課程試題C附件1題號一二三四五六七總分分數(shù)合分人:復查人:一、填空題〔每空1分,共20分〕分數(shù)評卷人1.智能控制是一門新興的學科,它具有非常廣泛的應用領域,例如、、、和。2.傳統(tǒng)控制包括和。3.一個理想的智能控制系統(tǒng)應具備的性能是、、、、等。4.學習系統(tǒng)的四個根本組成局部是、、、。5.專家系統(tǒng)的根本組成局部是、、。二、簡答題:〔每題5分,共30分〕分數(shù)評卷人智能控制系統(tǒng)的結構一般有哪幾局部組成,它們之間存在什么關系?智能控制系統(tǒng)有哪些類型,各自的特點是什么?比擬智能控制與傳統(tǒng)控制的特點。4.根據(jù)外部環(huán)境所提供的知識信息與學習模塊之間的相互作用方式,機器學習可以劃分為哪幾種方式?5.建造專家控制系統(tǒng)大體需要哪五個步驟?6.為了把專家系統(tǒng)技術應用于直接專家控制系統(tǒng),在專家系統(tǒng)設計上必須遵循的原那么是什么?三、作圖題:〔每圖4分,共20分〕分數(shù)評卷人1.畫出以下應用場合下適當?shù)碾`屬函數(shù):〔a〕我們絕對相信附近的e(t)是“正小”,只有當e(t)足夠遠離時,我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對于遠離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動,我們很快失去信心,而隨著e(t)從向右移動,我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學表達形式,并畫出隸屬函數(shù)圖。四、計算題:〔每題10分,共20分〕分數(shù)評卷人1.一個模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊含(usingproductopertor);2.設論域,且試求〔補集〕,〔補集〕五、畫出靜態(tài)多層前向人工神經(jīng)網(wǎng)絡〔BP網(wǎng)絡〕的結構圖,并簡述BP神經(jīng)網(wǎng)絡的工作過程〔10分〕分數(shù)評卷人。附件1智能控制課程試題D附件1題號一二三四五六七總分分數(shù)合分人:復查人:一、填空題〔每空1分,共20分〕分數(shù)評卷人1.智能控制是一門新興的學科,它具有非常廣泛的應用領域,例如、、、和。2.智能控制系統(tǒng)的主要類型有:、、、、和。3.一個理想的智能控制系統(tǒng)應具備的性智能能是、、等。4.在設計知識表達方法時,必須從表達方法的、、這四個方面全面加以均衡考慮。5.在一個神經(jīng)網(wǎng)絡中,常常根據(jù)處理單元的不同處理功能,將處理單元分成輸入單元、輸出單元和三類。二、簡答題:〔每題5分,共30分〕分數(shù)評卷人智能控制系統(tǒng)的結構一般有哪幾局部組成,它們之間存在什么關系?試說明智能控制的三元結構,并畫出展示它們之間關系的示意圖。比擬智能控制與傳統(tǒng)控制的特點。4.神經(jīng)網(wǎng)絡應具的四個根本屬性是什么?5.神經(jīng)網(wǎng)絡的學習方法有哪些?6.按照專家系統(tǒng)所求解問題的性質,可分為哪幾種類型?三、作圖題:〔每圖4分,共20分〕分數(shù)評卷人1.畫出以下應用場合下適當?shù)碾`屬函數(shù):〔a〕我們絕對相信附近的e(t)是“正小”,只有當e(t)足夠遠離時,我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對于遠離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動,我們很快失去信心,而隨著e(t)從向右移動,我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學表達形式,并畫出隸屬函數(shù)圖。四、計算題:〔每題10分,共20分〕分數(shù)評卷人1.一個模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊含(usingproductopertor);2.設論域,且試求〔補集〕,〔補集〕五、試述專家控制系統(tǒng)的工作原理〔共10分〕分數(shù)評卷人Fuzzycontrolofaball-balancingsystemⅠ.IntroductionTheball-balancingsystemconsistsofacartwithanarcmadeoftwoparallelpipesonwhichasteelballrolls.Thecartmovesonapairoftrackshorizontallymountedonaheavysupport(Fig.1).Thecontrolobjectiveistobalancetheballonthetopofthearcandatthesametimeplacethecartinadesiredposition.Itiseducational,becausethelaboratoryrigissufficientlyslowforvisualinspectionofdifferentcontrolstrategiesandthemathematicalmodelissufficientlycomplextobechallenging.Itisaclassicalpendulumproblem,liketheonesusedasabenchmarkproblemforfuzzyandneuralnetcontrollers,assalesmaterialforfuzzydesigntools.Initially,thecartisinthemiddleofthetrackandtheballisontheleftsideofthecurvedarc.Acontrollerpullsthecartlefttogettheballupnearthemiddle,thenthecontrolleradjuststhecartpositionverycarefully,withoutloosingtheball.Fuzzycontrolprovidesaformatmethodologyforrepresenting,manipulatingandimplementingahuman’sheuristicknowledgeabouthowtocontrolasystem[1-3].Here,thefuzzycontroldesignmethodwillbeusedtocontroltheball-balancingsystem.Fig.1Ball-balancinglaboratoryrigⅡ.Designobjectivea).Learningtheoperatingprincipleoftheball-balancingsystem;b).Masteringthefuzzycontrolprincipleanddesignprocedure;c).Enhancingtheprogrammingpowerusingmatlab.Ⅲ.Designrequirementsa).Balancingtheballonthetopofthearcandatthesametimeplacethecartinadesiredposition.b).Comparingthecontrolresultofthelinearcontrollerwiththatofthefuzzycontrollerandthinkingabouttheadvantageoffuzzycontroltoconventionalcontrol.Ⅳ.Designprinciple①Modeldescriptionoftheball-balancingsystemIntroducethestatevectorofstatevariables(representscartpositionandrepresentsballangulardeviation)Thenonlinearstate-spaceequations[5]aregivenasfollows:Whererepresentscartradiusofthearc,isthecartweight,representscartdrivingforce,istheballradius,istheballrollingradius,istheballweight,istheballmomentofinertiaandrepresentsgravity.Themodelcanbelinearisedaroundtheorigin.Theapproximationstothetrigonometricfunctionsareintroducedasfollowsandthelinearstate-spacemodelcanbeobtainedasfollowsMatricesaresimplyandgivenasfollowswith,Theactualvaluesoftheconstantsare.②FuzzycontrollerdesignTherearespecificcomponentscharactersticofafuzzycontrollertosupportadesignprocedure.IntheblockdiagraminFig.2,thefuzzycontrollerhasfourmaincomponents.Thefollowingexplainstheblockdiagram.Fig.2FuzzycontrollerarchitectureFuzzificationThefirstcomponentisfuzzification,whichconvertseachpieceofinputdatatodegreesofmembershipbyalookupinoneofseveralmembershipfunctions.Thefuzzificationblockthusmatchestheinputdatawiththeconditionsoftherulestodeterminehowwelltheconditionofeachrulematchesthatparticularinputinstance.RulebaseTherulebasecontainsafuzzylogicquantificationoftheexpert’slinguisticdescriptionofhowtoachievegoodcontrol.c.InferenceengineForeachrule,theinferenceenginelooksupthemembershipvaluesintheconditionoftherule.AggregationTheaggregationoperationisusedwhencalculatingthedegreeoffulfillmentorfiringstrengthoftheconditionofarule.Aggregationisequivalenttofuzzification,whenthereisonlyoneinputtothecontroller.Aggreagtionissometimesalsocalledfufilmentoftheruleorfiringstrength.ActivationTheactivationofaruleisthedeductionoftheconclusion,possiblyreducedbyitsfiringstrength.Arulecanbeweightedbyaprioribyaweightingfactor,whichisitsdegreeofconfidence.Thedegreeofconfidenceisdeterminedbythedesigner,oralearningprogramtryingtoadapttherulestosomeinput-outputrelationship.AccumulationAllactivatedconclusionsareaccumulatedusingthemaxoperation.d.DefuzzificationTheresultingfuzzysetmustbeconvertedtoanumberthatcanbesenttotheprocessesasacontrolsignal.Thisoperationiscalleddefuzzification.Theoutputsetscanbesingletons,buttheycanalsobelinearcombinationsoftheinputs,orevenafunctionoftheinputs.TheT-SfuzzymodelwasproposedbyTakagiandSugenoinanefforttodevelopasystematicapproachtogeneratingfuzzyrulesfromagiveninput-outputdataset[4].Itsrulestructurehasthefollowingform:Whereisafuzzyset,istheinput,isthenumberofinputs,istheoutputspecifiedbytherule,isthetruthvalueparameter.Usingfuzzyinferencebaseduponproduct-sum-gravityatagiveninput,,thefinaloutputofthefuzzymodel,isinferredbytakingtheweightedaverageofwhereisthenumberoffuzzyrules,theweight,impliestheoveralltruthvalueoftherulecalculatedbasedonthedegreesofmembershipvalues:③ComputersimulationThesimulationresultscanbeobtainedbythedesignedprogramusingmatlab.Initialconditionscanbechangedandcontrollergainscanbeadjusted.Thenthedesiredresultscanbeobtained.Ⅴ.Designprocedurea).Themodeloftheball-balancingsystemhasbeengiven;b).Fuzzycontrollerdesign;Fuzzycontroldesignessentiallyamountsto(1)choosingthefuzzycontrollerinputsandoutputs(2)choosingthepreprocessingthatisneededforthecontrollerinputsandpossiblypostprocessingthatisneededfortheoutputs,and(3)designingeachofthefourcomponentsofthefuzzycontrollershowninFig.2.c).Computersimulation.References[1].K.M.PassinoandS.Yurkovich(1997).Fuzzycontrol,1stedn,AddisionWesleyLongman,Colifornia.[2].CaiZixing.IntelligentControl:Principles,TechniquesandApplications.Singapore-NewJersey:WorldScientificPublishers,Dec.1997.[3].Pedrycz,W.(1993).Fuzzycontrolandfuzzysystems,secondedn,WileyandSons,NewYork.[4].Takagi,T.andSugno,M.(1985).Fuzzyidentificationofsystemsanditsapplicationstomodelingandcontrol,IEEETrans.Systems,Man&Cybernetics15(1):116-132.SpeedcontroldesignforavehiclesystemusingfuzzylogicⅠ.IntroductionEngineandotherautomobilesystemsareincreasinglycontrolledelectronically.Thishasledtoimprovedfueleconomy,reducedpollution,

improveddrivingsafetyandreducedmanufacturingcosts.Howevertheautomobile

isahostileenvironment:especiallyintheenginecompartment,wherehightemperature,humidity,vibration,electricalinterferenceandafinecocktailofpotentiallycorrosivepollutantsarepresent.Thesehostilefactorsmaycauseelectricalcontactstodeteriorate,surfaceresistancestofallandsensitiveelectronicsystemstofailinavarietyofmodes.Someofthesefailuremodeswillbebenign,whereasothersmaybedangerousandcauseaccidentsandendangertohumanlife.Acruisecontrolsystem,orvehiclespeedcontrolsystemcankeepavehicle'sspeedconstantonlongrunsandthereforemayhelppreventdriverfatigue[2-5].Ifthedriverhandsoverspeedcontroltoacruisecontrolsystem,thenthecapabilityofthesystemtocontrolspeedtothesetvalueisjustascriticaltosafetyasisthecapabilityofthedrivertocontrolspeedmanually.Sothecruisecontrolsystemdesignisimperativeandimportanttoanautomobile.Ⅱ.Designrequirementsa).Designingcontrollerusingfuzzylogic;b).Makingtheautomobile’sspeedkeepconstant.Ⅲ.ModeldescriptionoftheautomobileThedynamicsoftheautomobile[1]aregivenasfollowsWhereisthecontrolinput(representsathrottleinputandrepresentsabrakeinput),isthemassofthevehicle,isitsaerodynamicdrag,isaconstantfrictionalforce,isthedriving/brakingforce,andsecissaturatedat).Wecanusefuzzycontrolmethodtodesignacruisecontrolsystem.Obviously,thefuzzycruisecontroldesignobjectiveistodevelopafuzzycontrollerthatregulatesavehicle’sspeedtoadriver-specifiedvalue.Ⅳ.SpeedcontroldesignusingfuzzylogicFuzzycontrollogicandneuralnetworksareotherexamplesofmethodologiescontrolengineersareexaminingtoaddressthecontrolofverycomplexsystems.Agoodfuzzycontrollogicapplicationisincruisecontrolarea.1)DesignofPIfuzzycontrollerSupposethatwewishtobeabletotrackasteporrampchangeinthedriver-specifiedspeedvalueveryaccurately.A“PIfuzzycontroller”canbeusedasshowninFig.1.InFig.1,thefuzzycontrollerisdenotedby;andarescalinggains;andistheinputoftheintegrator.Fig.1SpeedcontrolsystemusingaPIfuzzycontrollerFindthedifferentialequationthatdescribestheclosed-loopsystem.Letthestatebeandfindasystemofthreefirst-orderordinarydifferentialequationsthatcanbeusedbytheRunge-Kuttamethodinthesimulationoftheclosed-loopsystem.isusedtorepresentthecontrollerinthedifferentialequations.Forthereferenceinput,threedifferenttestsignalscanbeusedasfollows:a:Testinput1makes=18m/sec(40.3mph)forand=22m/sec(49.2mph)for.b:Testinput2makes=18m/sec(40.3mph)forandincreaseslinearly(aramp)from18to22by,andthenfor.c:Testinput3makes=22forandweuseastheinitialcondition(thisrepresentsstartingthevehicleatrestandsuddenlycommandingalargeincreasespeed).Usefortestinput1and2.Designthefuzzycontrollertogetlessthan2%overshoot,arise-timebetween5and7sec,andasettlingtimeoflessthan8sec(i.e.,reachtowithin2%ofthefinalvaluewithin8sec)forthejumpfrom18to22in“testinput1”thatisdefinedabove.Also,fortherampinput(“testinput2”above)itmusthavelessthan1mph(0.447)steady-stateerror(i.e.,attheendoftheramppartoftheinputhavelessthan1mpherror).Fullyspecifythecontroller(e.g.,themembershipfunctions,rule-basedefuzzification,etc.)andsimulatetheclosed-loopsystemtodemonstratethatitperformsproperly.Provideplotsofandonthesameaxisandonadifferentplot.Fortestinput3findtherise-time,overshoot,2%settlingtime,andsteady-stateerrorfortheclosed-loopsystemforthecontrollerthatyoudesignedtomeetthespecificationsfortestinput1and2.UsingtheRunge-Kuttamethodandintegrationstepsizeof0.01,thesimulationresultscanbeshownasfollows.①.Testinput1Fig.2Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput1②.Testinput2Fig.3Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput2③.Testinput3Fig.4Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput32)DesignofPDfuzzycontrollerSupposethatyouareconcernedwithtrackingastepchangeinaccuratelyandthatyouusethePDfuzzycontrollershowninFig.5.Torepresentthederivative,simplyuseabackwarddifferenceWhereistheintegrationstepsizeinyoursimulation(oritcouldbeyoursamplingperiodinanimplementation).Fig.5SpeedcontrolsystemusingaPDfuzzycontrollerDesignaPDfuzzycontrollertogetlessthan2%overshoot,arise-timebetween7and10sec.andasettlingtimeoflessthan10secfortestinput1definedina).Also,fortherampinput(testinput2in1))itmusthavelessthan1mphsteady-stateerrortotheramp(i.e.,attheendoftheramppartoftheinput,havelessthan1mpherror).Fullyspecifyyourcontrollerandsimulatetheclosed-loopsystemtodemonstratethatitperformsproperly.Provideplotsofandonthesameaxisandonadifferentplot.Inthesimulations,theRunge-Kuttamethodisusedandanintegrationstepsizeof0.01.Assumethatfortestinputs1and2(henceweignorethederivativeinputincomingupwiththestateequationsfortheclosed-loopsystemandsimplyusetheapproximationforc(t)thatisshownabovesothatwehaveatwo-statesystem).Asafinaltestletandusetestinput3definedin1).①.Testinput1Fig.6Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput1②.Testinput2Fig.7Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput2③.Testinput3Fig.8Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput3Ⅴ.SummaryTokeepanautomobile’sspeedconstant,aspeedcontroldesignmethodusingfuzzylogicispresented.PIfuzzycontrollerandPDfuzzycontrollerdesignschemesaregiventoregulateavehicle’sspeedtoadriver-specifiedvalue.Thesimulationresultsshowthevalidityandoftheproposedtechnique.Thecontroldesignprocedurecanbesummarizedasfollows:ModelingandperformanceobjectivesBasically,theroleofmodelingafuzzycontroldesignisquite

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論