版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2019年江蘇【高考】數(shù)學(xué)試題及答案2019年江蘇【高考】數(shù)學(xué)試題及答案2019年江蘇【高考】數(shù)學(xué)試題及答案絕密★啟用前2019年普通高等學(xué)校招生全國統(tǒng)一考試(江蘇卷)數(shù)學(xué)Ⅰ注意事項(xiàng)考生在答題前請(qǐng)認(rèn)真閱讀本注意事項(xiàng)及各題答題要求1.本試卷共4頁,均為非選擇題(第1題~第20題,共20題)。本卷滿分為160分,考試時(shí)間為120分鐘??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一片交回。2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置。3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員從答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符。4.作答試題,必須用0.5毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效。5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗。參考公式:樣本數(shù)據(jù)的方差,其中.柱體的體積,其中是柱體的底面積,是柱體的高.錐體的體積,其中是錐體的底面積,是錐體的高.一、填空題:本大題共14小題,每小題5分,共計(jì)70分.請(qǐng)把答案填寫在答題卡相應(yīng)位置上.1.已知集合,,則▲.2.已知復(fù)數(shù)的實(shí)部為0,其中為虛數(shù)單位,則實(shí)數(shù)a的值是▲.3.下圖是一個(gè)算法流程圖,則輸出的S的值是▲.4.函數(shù)的定義域是▲.5.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是▲.6.從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿者服務(wù),則選出的2名同學(xué)中至少有1名女同學(xué)的概率是▲.7.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的漸近線方程是▲.8.已知數(shù)列是等差數(shù)列,是其前n項(xiàng)和.若,則的值是▲.9.如圖,長方體的體積是120,E為的中點(diǎn),則三棱錐E-BCD的體積是▲.10.在平面直角坐標(biāo)系中,P是曲線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線x+y=0的距離的最小值是▲.11.在平面直角坐標(biāo)系中,點(diǎn)A在曲線y=lnx上,且該曲線在點(diǎn)A處的切線經(jīng)過點(diǎn)(-e,-1)(e為自然對(duì)數(shù)的底數(shù)),則點(diǎn)A的坐標(biāo)是▲.12.如圖,在中,D是BC的中點(diǎn),E在邊AB上,BE=2EA,AD與CE交于點(diǎn).若,則的值是▲.13.已知,則的值是▲.14.設(shè)是定義在R上的兩個(gè)周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時(shí),,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程有8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是▲.二、解答題:本大題共6小題,共計(jì)90分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.15.(本小題滿分14分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.(1)若a=3c,b=,cosB=,求c的值;(2)若,求的值.16.(本小題滿分14分)如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.求證:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(本小題滿分14分)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點(diǎn)為F1(–1、0),F(xiàn)2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點(diǎn)A,與橢圓C交于點(diǎn)D.連結(jié)AF1并延長交圓F2于點(diǎn)B,連結(jié)BF2交橢圓C于點(diǎn)E,連結(jié)DF1.已知DF1=.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)求點(diǎn)E的坐標(biāo).18.(本小題滿分16分)如圖,一個(gè)湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線型公路l,湖上有橋AB(AB是圓O的直徑).規(guī)劃在公路l上選兩個(gè)點(diǎn)P、Q,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.已知點(diǎn)A、B到直線l的距離分別為AC和BD(C、D為垂足),測得AB=10,AC=6,BD=12(單位:百米).(1)若道路PB與橋AB垂直,求道路PB的長;(2)在規(guī)劃要求下,P和Q中能否有一個(gè)點(diǎn)選在D處?并說明理由;(3)對(duì)規(guī)劃要求下,若道路PB和QA的長度均為d(單位:百米).求當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.19.(本小題滿分16分)設(shè)函數(shù)、為f(x)的導(dǎo)函數(shù).(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和的零點(diǎn)均在集合中,求f(x)的極小值;(3)若,且f(x)的極大值為M,求證:M≤.20.(本小滿分16分)定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.①求數(shù)列{bn}的通項(xiàng)公式;②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.?dāng)?shù)學(xué)Ⅱ(附加題)21.【選做題】本題包括A、B、C三小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.A.[選修4-2:矩陣與變換](本小題滿分10分)已知矩陣(1)求A2;(2)求矩陣A的特征值.B.[選修4-4:坐標(biāo)系與參數(shù)方程](本小題滿分10分)在極坐標(biāo)系中,已知兩點(diǎn),直線l的方程為.(1)求A,B兩點(diǎn)間的距離;(2)求點(diǎn)B到直線l的距離.C.[選修4-5:不等式選講](本小題滿分10分)設(shè),解不等式.【必做題】第22題、第23題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.22.(本小題滿分10分)設(shè).已知.(1)求n的值;(2)設(shè),其中,求的值.23.(本小題滿分10分)在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)集,令.從集合Mn中任取兩個(gè)不同的點(diǎn),用隨機(jī)變量X表示它們之間的距離.(1)當(dāng)n=1時(shí),求X的概率分布;(2)對(duì)給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).解析版絕密★啟用前2019年普通高等學(xué)校招生全國統(tǒng)一考試(江蘇卷)數(shù)學(xué)Ⅰ注意事項(xiàng)考生在答題前請(qǐng)認(rèn)真閱讀本注意事項(xiàng)及各題答題要求1.本試卷共4頁,均為非選擇題(第1題~第20題,共20題)。本卷滿分為160分,考試時(shí)間為120分鐘。考試結(jié)束后,請(qǐng)將本試卷和答題卡一片交回。2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置。3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員從答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符。4.作答試題,必須用0.5毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效。5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗。參考公式:樣本數(shù)據(jù)的方差,其中.柱體的體積,其中是柱體的底面積,是柱體的高.錐體的體積,其中是錐體的底面積,是錐體的高.一、填空題:本大題共14小題,每小題5分,共計(jì)70分.請(qǐng)把答案填寫在答題卡相應(yīng)位置上.1.已知集合,,則_____.【答案】.【解析】【分析】由題意利用交集的定義求解交集即可.【詳解】由題知,.【點(diǎn)睛】本題主要考查交集的運(yùn)算,屬于基礎(chǔ)題.2.已知復(fù)數(shù)的實(shí)部為0,其中為虛數(shù)單位,則實(shí)數(shù)a的值是_____.【答案】2.【解析】【分析】本題根據(jù)復(fù)數(shù)的乘法運(yùn)算法則先求得,然后根據(jù)復(fù)數(shù)的概念,令實(shí)部為0即得a的值.【詳解】,令得.【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算法則,虛部的定義等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.3.下圖是一個(gè)算法流程圖,則輸出的S的值是_____.【答案】5.【解析】【分析】結(jié)合所給的流程圖運(yùn)行程序確定輸出的值即可.【詳解】執(zhí)行第一次,不成立,繼續(xù)循環(huán),;執(zhí)行第二次,不成立,繼續(xù)循環(huán),;執(zhí)行第三次,不成立,繼續(xù)循環(huán),;執(zhí)行第四次,成立,輸出【點(diǎn)睛】識(shí)別、運(yùn)行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).(2)要識(shí)別、運(yùn)行程序框圖,理解框圖所解決的實(shí)際問題.(3)按照題目的要求完成解答并驗(yàn)證.4.函數(shù)的定義域是_____.【答案】.【解析】【分析】由題意得到關(guān)于x的不等式,解不等式可得函數(shù)的定義域.【詳解】由已知得,即解得,故函數(shù)的定義域?yàn)?【點(diǎn)睛】求函數(shù)的定義域,其實(shí)質(zhì)就是以函數(shù)解析式有意義為準(zhǔn)則,列出不等式或不等式組,然后求出它們的解集即可.5.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是____.【答案】.【解析】【分析】由題意首先求得平均數(shù),然后求解方差即可.【詳解】由題意,該組數(shù)據(jù)的平均數(shù)為,所以該組數(shù)據(jù)的方差是.【點(diǎn)睛】本題主要考查方差的計(jì)算公式,屬于基礎(chǔ)題.6.從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿者服務(wù),則選出的2名同學(xué)中至少有1名女同學(xué)的概率是_____.【答案】.【解析】【分析】先求事件的總數(shù),再求選出的2名同學(xué)中至少有1名女同學(xué)的事件數(shù),最后根據(jù)古典概型的概率計(jì)算公式得出答案.【詳解】從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿服務(wù),共有種情況.若選出的2名學(xué)生恰有1名女生,有種情況,若選出的2名學(xué)生都是女生,有種情況,所以所求的概率為.【點(diǎn)睛】計(jì)數(shù)原理是高考考查的重點(diǎn)內(nèi)容,考查的形式有兩種,一是獨(dú)立考查,二是與古典概型結(jié)合考查,由于古典概型概率的計(jì)算比較明確,所以,計(jì)算正確基本事件總數(shù)是解題的重要一環(huán).在處理問題的過程中,應(yīng)注意審清題意,明確“分類”“分步”,根據(jù)順序有無,明確“排列”“組合”.7.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的漸近線方程是_____.【答案】.【解析】【分析】根據(jù)條件求,再代入雙曲線的漸近線方程得出答案.【詳解】由已知得,解得或,因?yàn)?,所?因?yàn)椋噪p曲線的漸近線方程為.【點(diǎn)睛】雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),往往以小題的形式考查,其難度一般較小,是高考必得分題.雙曲線漸近線與雙曲線標(biāo)準(zhǔn)方程中的密切相關(guān),事實(shí)上,標(biāo)準(zhǔn)方程中化1為0,即得漸近線方程.8.已知數(shù)列是等差數(shù)列,是其前n項(xiàng)和.若,則的值是_____.【答案】16.【解析】【分析】由題意首先求得首項(xiàng)和公差,然后求解前8項(xiàng)和即可.【詳解】由題意可得:,解得:,則.【點(diǎn)睛】等差數(shù)列、等比數(shù)列的基本計(jì)算問題,是高考必考內(nèi)容,解題過程中要注意應(yīng)用函數(shù)方程思想,靈活應(yīng)用通項(xiàng)公式、求和公式等,構(gòu)建方程(組),如本題,從已知出發(fā),構(gòu)建的方程組.9.如圖,長方體的體積是120,E為的中點(diǎn),則三棱錐E-BCD的體積是_____.【答案】10.【解析】【分析】由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【詳解】因?yàn)殚L方體的體積為120,所以,因?yàn)闉榈闹悬c(diǎn),所以,由長方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點(diǎn)睛】本題蘊(yùn)含“整體和局部”的對(duì)立統(tǒng)一規(guī)律.在幾何體面積或體積的計(jì)算問題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補(bǔ)”的方法解題.10.在平面直角坐標(biāo)系中,P是曲線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線x+y=0的距離的最小值是_____.【答案】4.【解析】【分析】將原問題轉(zhuǎn)化為切點(diǎn)與直線之間的距離,然后利用導(dǎo)函數(shù)確定切點(diǎn)坐標(biāo)可得最小距離【詳解】當(dāng)直線平移到與曲線相切位置時(shí),切點(diǎn)Q即為點(diǎn)P到直線的距離最小.由,得,,即切點(diǎn),則切點(diǎn)Q到直線的距離為,故答案為:.【點(diǎn)睛】本題考查曲線上任意一點(diǎn)到已知直線的最小距離,滲透了直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取導(dǎo)數(shù)法和公式法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題.11.在平面直角坐標(biāo)系中,點(diǎn)A在曲線y=lnx上,且該曲線在點(diǎn)A處的切線經(jīng)過點(diǎn)(-e,-1)(e為自然對(duì)數(shù)的底數(shù)),則點(diǎn)A的坐標(biāo)是____.【答案】.【解析】【分析】設(shè)出切點(diǎn)坐標(biāo),得到切線方程,然后求解方程得到橫坐標(biāo)的值可得切點(diǎn)坐標(biāo).【詳解】設(shè)點(diǎn),則.又,當(dāng)時(shí),,點(diǎn)A在曲線上切線為,即,代入點(diǎn),得,即,考查函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,注意到,故存在唯一的實(shí)數(shù)根,此時(shí),故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問題:一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號(hào),防止與乘法公式混淆.二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn).12.如圖,在中,D是BC的中點(diǎn),E在邊AB上,BE=2EA,AD與CE交于點(diǎn).若,則的值是_____.【答案】.【解析】【分析】由題意將原問題轉(zhuǎn)化為基底的數(shù)量積,然后利用幾何性質(zhì)可得比值.【詳解】如圖,過點(diǎn)D作DF//CE,交AB于點(diǎn)F,由BE=2EA,D為BC中點(diǎn),知BF=FE=EA,AO=OD.,得即故.【點(diǎn)睛】本題考查在三角形中平面向量的數(shù)量積運(yùn)算,滲透了直觀想象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取幾何法,利用數(shù)形結(jié)合和方程思想解題.13.已知,則的值是_____.【答案】.【解析】【分析】由題意首先求得的值,然后利用兩角和差正余弦公式和二倍角公式將原問題轉(zhuǎn)化為齊次式求值的問題,最后切化弦求得三角函數(shù)式的值即可.【詳解】由,得,解得,或.,當(dāng)時(shí),上式當(dāng)時(shí),上式=綜上,【點(diǎn)睛】本題考查三角函數(shù)的化簡求值,滲透了邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取轉(zhuǎn)化法,利用分類討論和轉(zhuǎn)化與化歸思想解題.14.設(shè)是定義在R上的兩個(gè)周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時(shí),,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程有8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是_____.【答案】.【解析】【分析】分別考查函數(shù)和函數(shù)圖像的性質(zhì),考查臨界條件確定k的取值范圍即可.【詳解】當(dāng)時(shí),即又為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,其周期為4,如圖,函數(shù)與的圖象,要使在(0,9]上有8個(gè)實(shí)根,只需二者圖象有8個(gè)交點(diǎn)即可.當(dāng)時(shí),函數(shù)與的圖象有2個(gè)交點(diǎn);當(dāng)時(shí),的圖象為恒過點(diǎn)(-2,0)的直線,只需函數(shù)與的圖象有6個(gè)交點(diǎn).當(dāng)與圖象相切時(shí),圓心(1,0)到直線的距離為1,即,得,函數(shù)與的圖象有3個(gè)交點(diǎn);當(dāng)過點(diǎn)(1,1)時(shí),函數(shù)與的圖象有6個(gè)交點(diǎn),此時(shí),得.綜上可知,滿足在(0,9]上有8個(gè)實(shí)根的k的取值范圍為.【點(diǎn)睛】本題考點(diǎn)為參數(shù)的取值范圍,側(cè)重函數(shù)方程的多個(gè)實(shí)根,難度較大.不能正確畫出函數(shù)圖象的交點(diǎn)而致誤,根據(jù)函數(shù)的周期性平移圖象,找出兩個(gè)函數(shù)圖象相切或相交的臨界交點(diǎn)個(gè)數(shù),從而確定參數(shù)的取值范圍.二、解答題:本大題共6小題,共計(jì)90分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.15.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.(1)若a=3c,b=,cosB=,求c的值;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)由題意結(jié)合余弦定理得到關(guān)于c的方程,解方程可得邊長c的值;(2)由題意結(jié)合正弦定理和同角三角函數(shù)基本關(guān)系首先求得的值,然后由誘導(dǎo)公式可得的值.【詳解】(1)因?yàn)椋捎嘞叶ɡ?,得,?所以.(2)因?yàn)椋烧叶ɡ?,得,所?從而,即,故.因?yàn)?,所以,從?因此.【點(diǎn)睛】本題主要考查正弦定理、余弦定理、同角三角函數(shù)關(guān)系、誘導(dǎo)公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.16.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.求證:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)見解析;(2)見解析.【解析】【分析】(1)由題意結(jié)合幾何體的空間結(jié)構(gòu)特征和線面平行的判定定理即可證得題中的結(jié)論;(2)由題意首先證得線面垂直,然后結(jié)合線面垂直證明線線垂直即可.【詳解】(1)因?yàn)镈,E分別為BC,AC的中點(diǎn),所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因?yàn)镋D?平面DEC1,A1B1平面DEC1,所以A1B1∥平面DEC1.(2)因?yàn)锳B=BC,E為AC的中點(diǎn),所以BE⊥AC.因?yàn)槿庵鵄BC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因?yàn)锽E?平面ABC,所以CC1⊥BE.因?yàn)镃1C?平面A1ACC1,AC?平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因?yàn)镃1E?平面A1ACC1,所以BE⊥C1E.【點(diǎn)睛】本題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力和推理論證能力.17.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點(diǎn)為F1(–1、0),F(xiàn)2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點(diǎn)A,與橢圓C交于點(diǎn)D.連結(jié)AF1并延長交圓F2于點(diǎn)B,連結(jié)BF2交橢圓C于點(diǎn)E,連結(jié)DF1.已知DF1=.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)求點(diǎn)E的坐標(biāo).【答案】(1);(2).【解析】【分析】(1)由題意分別求得a,b的值即可確定橢圓方程;(2)解法一:由題意首先確定直線的方程,聯(lián)立直線方程與圓的方程,確定點(diǎn)B的坐標(biāo),聯(lián)立直線BF2與橢圓的方程即可確定點(diǎn)E的坐標(biāo);解法二:由題意利用幾何關(guān)系確定點(diǎn)E的縱坐標(biāo),然后代入橢圓方程可得點(diǎn)E的坐標(biāo).【詳解】(1)設(shè)橢圓C的焦距為2c.因?yàn)镕1(-1,0),F(xiàn)2(1,0),所以F1F2=2,c=1.又因?yàn)镈F1=,AF2⊥x軸,所以DF2=,因此2a=DF1+DF2=4,從而a=2由b2=a2-c2,得b2=3.因此,橢圓C的標(biāo)準(zhǔn)方程為.(2)解法一:由(1)知,橢圓C:,a=2,因?yàn)锳F2⊥x軸,所以點(diǎn)A的橫坐標(biāo)為1.將x=1代入圓F2的方程(x-1)2+y2=16,解得y=±4.因?yàn)辄c(diǎn)A在x軸上方,所以A(1,4).又F1(-1,0),所以直線AF1:y=2x+2.由,得,解得或.將代入,得,因此.又F2(1,0),所以直線BF2:.由,得,解得或.又因?yàn)镋是線段BF2與橢圓的交點(diǎn),所以.將代入,得.因此.解法二:由(1)知,橢圓C:.如圖,連結(jié)EF1.因?yàn)锽F2=2a,EF1+EF2=2a,所以EF1=EB,從而∠BF1E=∠B.因?yàn)镕2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,從而EF1∥F2A.因?yàn)锳F2⊥x軸,所以EF1⊥x軸.因?yàn)镕1(-1,0),由,得.又因?yàn)镋是線段BF2與橢圓的交點(diǎn),所以.因此.【點(diǎn)睛】本題主要考查直線方程、圓的方程、橢圓方程、橢圓的幾何性質(zhì)、直線與圓及橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、分析問題能力和運(yùn)算求解能力.18.如圖,一個(gè)湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線型公路l,湖上有橋AB(AB是圓O的直徑).規(guī)劃在公路l上選兩個(gè)點(diǎn)P、Q,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.已知點(diǎn)A、B到直線l的距離分別為AC和BD(C、D為垂足),測得AB=10,AC=6,BD=12(單位:百米).(1)若道路PB與橋AB垂直,求道路PB的長;(2)在規(guī)劃要求下,P和Q中能否有一個(gè)點(diǎn)選在D處?并說明理由;(3)對(duì)規(guī)劃要求下,若道路PB和QA的長度均為d(單位:百米).求當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.【答案】(1)15(百米);(2)見解析;(3)17+(百米).【解析】【分析】解:解法一:(1)過A作,垂足為E.利用幾何關(guān)系即可求得道路PB的長;(2)分類討論P(yáng)和Q中能否有一個(gè)點(diǎn)選在D處即可.(3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.解法二:(1)建立空間直角坐標(biāo)系,分別確定點(diǎn)P和點(diǎn)B的坐標(biāo),然后利用兩點(diǎn)之間距離公式可得道路PB的長;(2)分類討論P(yáng)和Q中能否有一個(gè)點(diǎn)選在D處即可.(3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.【詳解】解法一:(1)過A作,垂足為E.由已知條件得,四邊形ACDE為矩形,.因?yàn)镻B⊥AB,所以.所以.因此道路PB的長為15(百米).(2)①若P在D處,由(1)可得E在圓上,則線段BE上的點(diǎn)(除B,E)到點(diǎn)O的距離均小于圓O的半徑,所以P選在D處不滿足規(guī)劃要求.②若Q在D處,連結(jié)AD,由(1)知,從而,所以∠BAD為銳角.所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.因此,Q選在D處也不滿足規(guī)劃要求.綜上,P和Q均不能選在D處.(3)先討論點(diǎn)P的位置.當(dāng)∠OBP<90°時(shí),線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;當(dāng)∠OBP≥90°時(shí),對(duì)線段PB上任意一點(diǎn)F,OF≥OB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.設(shè)為l上一點(diǎn),且,由(1)知,,此時(shí);當(dāng)∠OBP>90°時(shí),在中,.由上可知,d≥15.再討論點(diǎn)Q的位置.由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.當(dāng)QA=15時(shí),.此時(shí),線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.綜上,當(dāng)PB⊥AB,點(diǎn)Q位于點(diǎn)C右側(cè),且CQ=時(shí),d最小,此時(shí)P,Q兩點(diǎn)間的距離PQ=PD+CD+CQ=17+.因此,d最小時(shí),P,Q兩點(diǎn)間的距離為17+(百米).解法二:(1)如圖,過O作OH⊥l,垂足為H.以O(shè)為坐標(biāo)原點(diǎn),直線OH為y軸,建立平面直角坐標(biāo)系.因?yàn)锽D=12,AC=6,所以O(shè)H=9,直線l的方程為y=9,點(diǎn)A,B的縱坐標(biāo)分別為3,?3.因?yàn)锳B為圓O的直徑,AB=10,所以圓O的方程為x2+y2=25.從而A(4,3),B(?4,?3),直線AB的斜率為.因?yàn)镻B⊥AB,所以直線PB的斜率為,直線PB的方程為.所以P(?13,9),.因此道路PB的長為15(百米).(2)①若P在D處,取線段BD上一點(diǎn)E(?4,0),則EO=4<5,所以P選在D處不滿足規(guī)劃要求.②若Q在D處,連結(jié)AD,由(1)知D(?4,9),又A(4,3),所以線段AD:.在線段AD上取點(diǎn)M(3,),因?yàn)?,所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.因此Q選在D處也不滿足規(guī)劃要求.綜上,P和Q均不能選在D處.(3)先討論點(diǎn)P的位置.當(dāng)∠OBP<90°時(shí),線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;當(dāng)∠OBP≥90°時(shí),對(duì)線段PB上任意一點(diǎn)F,OF≥OB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.設(shè)為l上一點(diǎn),且,由(1)知,,此時(shí);當(dāng)∠OBP>90°時(shí),在中,.由上可知,d≥15.再討論點(diǎn)Q的位置.由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.當(dāng)QA=15時(shí),設(shè)Q(a,9),由,得a=,所以Q(,9),此時(shí),線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.綜上,當(dāng)P(?13,9),Q(,9)時(shí),d最小,此時(shí)P,Q兩點(diǎn)間的距離.因此,d最小時(shí),P,Q兩點(diǎn)間的距離為(百米).【點(diǎn)睛】本題主要考查三角函數(shù)的應(yīng)用、解方程、直線與圓等基礎(chǔ)知識(shí),考查直觀想象和數(shù)學(xué)建模及運(yùn)用數(shù)學(xué)知識(shí)分析和解決實(shí)際問題的能力.19.設(shè)函數(shù),為f(x)的導(dǎo)函數(shù).(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和的零點(diǎn)均在集合中,求f(x)的極小值;(3)若,且f(x)的極大值為M,求證:M≤.【答案】(1);(2)見解析;(3)見解析.【解析】【分析】(1)由題意得到關(guān)于a的方程,解方程即可確定a的值;(2)由題意首先確定a,b,c的值從而確定函數(shù)的解析式,然后求解其導(dǎo)函數(shù),由導(dǎo)函數(shù)即可確定函數(shù)的極小值.(3)由題意首先確定函數(shù)的極大值M的表達(dá)式,然后可用如下方法證明題中的不等式:解法一:由函數(shù)的解析式結(jié)合不等式的性質(zhì)進(jìn)行放縮即可證得題中的不等式;解法二:由題意構(gòu)造函數(shù),求得函數(shù)在定義域內(nèi)的最大值,因?yàn)?,所以.?dāng)時(shí),.令,則.令,得.列表如下:+0–極大值所以當(dāng)時(shí),取得極大值,且是最大值,故.所以當(dāng)時(shí),,因此.【詳解】(1)因?yàn)椋裕驗(yàn)?,所以,解得.?)因?yàn)椋?,從而.令,得或.因?yàn)?,都在集合中,且,所以.此時(shí),.令,得或.列表如下:1+0–0+極大值極小值所以的極小值為.(3)因?yàn)?,所以,.因?yàn)?,所以,則有2個(gè)不同的零點(diǎn),設(shè)為.由,得.列表如下:+0–0+極大值極小值所以的極大值.解法一:.因此.解法二:因?yàn)椋裕?dāng)時(shí),.令,則.令,得.列表如下:+0–極大值所以當(dāng)時(shí),取得極大值,且是最大值,故.所以當(dāng)時(shí),,因此.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查綜合運(yùn)用數(shù)學(xué)思想方法分析與解決問題以及邏輯推理能力.20.定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.①求數(shù)列{bn}的通項(xiàng)公式;②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.【答案】(1)見解析;(2)①bn=n;②5.【解析】【分析】(1)由題意分別求得數(shù)列的首項(xiàng)和公比即可證得題中的結(jié)論;(2)①由題意利用遞推關(guān)系式討論可得數(shù)列{bn}是等差數(shù)列,據(jù)此即可確定其通項(xiàng)公式;②由①確定的值,將原問題進(jìn)行等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù)研究函數(shù)的性質(zhì)即可求得m的最大值.【詳解】(1)設(shè)等比數(shù)列{an}的公比為q,所以a1≠0,q≠0.由,得,解得.因此數(shù)列為“M—數(shù)列”.(2)①因?yàn)?,所以.由得,則.由,得,當(dāng)時(shí),由,得,整理得.所以數(shù)列{bn}是首項(xiàng)和公差均為1的等差數(shù)列.因此,數(shù)列{bn}的通項(xiàng)公式為bn=n.②由①知,bk=k,.因?yàn)閿?shù)列{cn}為“M–數(shù)列”,設(shè)公比為q,所以c1=1,q>0.因ck≤bk≤ck+1,所以,其中k=1,2,3,…,m.當(dāng)k=1時(shí),有q≥1;當(dāng)k=2,3,…,m時(shí),有.設(shè)f(x)=,則.令,得x=e.列表如下:xe(e,+∞)+0–f(x)極大值因?yàn)?,所以.取,?dāng)k=1,2,3,4,5時(shí),,即,經(jīng)檢驗(yàn)知也成立.因此所求m的最大值不小于5.若m≥6,分別取k=3,6,得3≤q3,且q5≤6,從而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6.綜上,所求m的最大值為5.【點(diǎn)睛】本題主要考查等差和等比數(shù)列的定義、通項(xiàng)公式、性質(zhì)等基礎(chǔ)知識(shí),考查代數(shù)推理、轉(zhuǎn)化與化歸及綜合運(yùn)用數(shù)學(xué)知識(shí)探究與解決問題的能力.?dāng)?shù)學(xué)Ⅱ(附加題)【選做題】本題包括21、22、23三小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.21.A已知矩陣(1)求A2;(2)求矩陣A的特征值.【答案】(1);(2).【解析】【分析】(1)利用矩陣的乘法運(yùn)算法則計(jì)算的值即可;(2)首先求得矩陣的特征多項(xiàng)式,然后利用特征多項(xiàng)式求解特征值即可.【詳解】(1)因?yàn)椋?=.(2)矩陣A的特征多項(xiàng)式為.令,解得A的特征值.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算、特征值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.B.在極坐標(biāo)系中,已知兩點(diǎn),直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標(biāo)須知購車招標(biāo)要求3篇
- 居民區(qū)煤氣供應(yīng)與安全責(zé)任合同3篇
- 教育培訓(xùn)機(jī)構(gòu)砌體施工合同3篇
- 教育服務(wù)行業(yè)勞動(dòng)合同標(biāo)準(zhǔn)3篇
- 教育機(jī)構(gòu)勞動(dòng)合同原件3篇
- 展覽展示浮雕施工協(xié)議
- 企業(yè)教育貸款還款協(xié)議
- 防火設(shè)施維修施工合同
- 實(shí)驗(yàn)室門套翻新合同
- 建筑施工租賃吊車合同
- 主播崗位職責(zé)及績效考核指標(biāo)
- 2024年高中英語衡水體書法練字字帖
- 兒童文學(xué)概論(第二版) 課件 第3、4章 中國兒童文學(xué)概述、外國兒童文學(xué)概述
- 2024年度思政課一體化建設(shè)活動(dòng)方案
- 全國交管12123駕駛證學(xué)法減分試題和答案(50題完整版)499
- 銀行安全案件防控
- 自來水反恐事件預(yù)案分級(jí)
- XXX學(xué)校領(lǐng)導(dǎo)包班工作實(shí)施方案范文
- 中職卓越聯(lián)盟高一上學(xué)期1月期末語文試題(含答案)
- 輸配電系統(tǒng)的新能源接入與電價(jià)測算
- 反洗錢述職報(bào)告
評(píng)論
0/150
提交評(píng)論