版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省陸慕高級(jí)中學(xué)2024屆高考數(shù)學(xué)一模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),以為直徑的圓過(guò)且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.6.某校8位學(xué)生的本次月考成績(jī)恰好都比上一次的月考成績(jī)高出50分,則以該8位學(xué)生這兩次的月考成績(jī)各自組成樣本,則這兩個(gè)樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)7.《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1208.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.209.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.10.已知平面向量,滿足,,且,則()A.3 B. C. D.511.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb12.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲,乙兩隊(duì)參加關(guān)于“一帶一路”知識(shí)競(jìng)賽,甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,若兩隊(duì)各出一名隊(duì)員進(jìn)行比賽,則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為_(kāi)_____.14.在二項(xiàng)式的展開(kāi)式中,的系數(shù)為_(kāi)_______.15.曲線在點(diǎn)處的切線方程是__________.16.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.18.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為證明:.19.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.20.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過(guò)點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由雙曲線的對(duì)稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的對(duì)稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.2、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).3、A【解析】
根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.4、B【解析】命題p:,為,又為真命題的充分不必要條件為,故5、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長(zhǎng)度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來(lái)描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來(lái)表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來(lái)描述,則可用這三個(gè)變量組成的有序數(shù)組來(lái)表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.6、A【解析】
通過(guò)方差公式分析可知方差沒(méi)有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績(jī)相比,成績(jī)和平均數(shù)都增加了50,所以沒(méi)有改變,根據(jù)方差公式可知方差不變.故選:A【點(diǎn)睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、C【解析】
觀察規(guī)律得根號(hào)內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號(hào)內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.8、C【解析】
利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點(diǎn)睛】本題考查等差數(shù)列的求和問(wèn)題,屬于基礎(chǔ)題9、D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長(zhǎng)相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.10、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.11、B【解析】試題分析:對(duì)于選項(xiàng)A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對(duì)于選項(xiàng)B,,,兩邊同乘以一個(gè)負(fù)數(shù)改變不等號(hào)方向,所以選項(xiàng)B正確;對(duì)于選項(xiàng)C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯(cuò)誤;對(duì)于選項(xiàng)D,利用在上為減函數(shù)易得,所以D錯(cuò)誤.所以本題選B.【考點(diǎn)】指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)【名師點(diǎn)睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.12、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
出場(chǎng)運(yùn)動(dòng)員編號(hào)相同的事件顯然有3種,計(jì)算出總的基本事件數(shù),由古典概型概率計(jì)算公式求得答案.【詳解】甲隊(duì)有編號(hào)為1,2,3的三名運(yùn)動(dòng)員,乙隊(duì)有編號(hào)為1,2,3,4的四名運(yùn)動(dòng)員,出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場(chǎng)的兩名運(yùn)動(dòng)員編號(hào)相同的概率為.故答案為:【點(diǎn)睛】本題考查求古典概率的概率問(wèn)題,屬于基礎(chǔ)題.14、60【解析】
直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】二項(xiàng)式的展開(kāi)式通項(xiàng)為:,取,則的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解析】
利用導(dǎo)數(shù)的幾何意義計(jì)算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本計(jì)算能力,要注意在某點(diǎn)處的切線與過(guò)某點(diǎn)的切線的區(qū)別,是一道容易題.16、【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解析】
(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18、(1)(2)證明見(jiàn)解析【解析】
(1)因?yàn)?,所以,所以,即,又因?yàn)?,所以?shù)列為等差數(shù)列,且公差為1,首項(xiàng)為1,則,即.設(shè)的公差為,則,所以(),則(),所以,因此,綜上,.(2)設(shè)數(shù)列的前n項(xiàng)和為,則兩式相減得,所以,設(shè)則,所以.19、(1)證明見(jiàn)解析;(2).【解析】
(1)通過(guò)證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問(wèn)題轉(zhuǎn)化為求到面的距離,利用等體積法求點(diǎn)面距離即可.【詳解】(1)因?yàn)槔庵侵比庵杂?,所以面又,分別為AB,BC的中點(diǎn)所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點(diǎn)到平面的距離等于點(diǎn)到平面的距離設(shè)點(diǎn)到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點(diǎn)睛】本題考查由線面垂直推證面面垂直,涉及利用等體積法求點(diǎn)面距離,屬綜合中檔題.20、(1)見(jiàn)解析;(2).【解析】
(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以.又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法計(jì)算直線與平面所成的角,考查推理能力與計(jì)算能力,屬于中等題.21、(1);(2).【解析】
(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對(duì)是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).①當(dāng)為奇數(shù)時(shí),;②當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.22、(1)見(jiàn)解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過(guò)圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的軌跡,進(jìn)而求出方程;(1)過(guò)點(diǎn)且斜率
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貸款延期補(bǔ)充協(xié)議書范本
- 2024居間合同樣的合同
- 工程測(cè)量設(shè)計(jì)合同
- 培訓(xùn)機(jī)構(gòu)合作合同樣本
- 技術(shù)許可與知識(shí)產(chǎn)權(quán)保護(hù)
- 國(guó)有企業(yè)下崗職工出中心與失業(yè)保險(xiǎn)“并軌”協(xié)議書
- 2024配方轉(zhuǎn)讓協(xié)議標(biāo)準(zhǔn)文本
- 工程合同簽訂方法
- 房屋租賃合同提前解除的策略與建議
- 園林綠化承包經(jīng)營(yíng)合同樣本
- 高中美術(shù)-文化變革 美術(shù)發(fā)展教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 尊敬師長(zhǎng)遵守紀(jì)律課件高中生文明禮儀教育主題班會(huì)
- 裁判員勞動(dòng)合同
- 常用中醫(yī)護(hù)理技術(shù)在腫瘤患者中的應(yīng)用
- 大學(xué)生溝通成功的案例(9篇)
- 2022年全國(guó)大學(xué)生英語(yǔ)競(jìng)賽D類試題(含答案)
- 音樂(lè)欣賞PPT全套完整教學(xué)課件
- 第二章作物需水量和灌溉用水量
- 深圳航空飛行品質(zhì)監(jiān)控系統(tǒng)(FOQA)需求規(guī)格說(shuō)明書 V2.0
- 消防員培訓(xùn)匯總課件
- 婦聯(lián)婚姻家庭矛盾糾紛化解工作匯報(bào)總結(jié)報(bào)告4篇
評(píng)論
0/150
提交評(píng)論