2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題含解析_第1頁
2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題含解析_第2頁
2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題含解析_第3頁
2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題含解析_第4頁
2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年吉林長白山第一高級中學高一下數(shù)學期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形2.在等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,則a4?a7的值為()A.6 B.1 C.﹣1 D.﹣63.已知分別為的三邊長,且,則=()A. B. C. D.34.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.45.函數(shù)的圖象與函數(shù)的圖象的交點個數(shù)為()A.3 B.2 C.1 D.06.如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結論正確的是()A.這15天日平均溫度的極差為B.連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天C.由折線圖能預測16日溫度要低于D.由折線圖能預測本月溫度小于的天數(shù)少于溫度大于的天數(shù)7.已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如圖所示(單位:km/h),若從中任抽取2輛汽車,則恰好有1輛汽車超速的概率為()A. B. C. D.8.已知,,且,則在方向上的投影為()A. B. C. D.9.不等式的解集為()A. B. C. D.10.在等比數(shù)列中,,,則等于()A.256 B.-256 C.128 D.-128二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列滿足:,,則_____.12.已知sin+cosα=,則sin2α=__13.已知直線與圓相交于兩點,則______.14.中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體的所有棱長和為_______.15.如圖,分別沿長方形紙片和正方形紙片的對角線剪開,拼成如圖所示的平行四邊形,且中間的四邊形為正方形.在平行四邊形內隨機取一點,則此點取自陰影部分的概率是______________16.已知,那么__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓:,點是直線:上的一動點,過點作圓M的切線、,切點為、.(Ⅰ)當切線PA的長度為時,求點的坐標;(Ⅱ)若的外接圓為圓,試問:當運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;(Ⅲ)求線段長度的最小值.18.在平面直角坐標系中,點,點P在x軸上(1)若,求點P的坐標:(2)若的面積為10,求點P的坐標.19.已知集合,數(shù)列的首項,且當時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.20.某大學要修建一個面積為的長方形景觀水池,并且在景觀水池四周要修建出寬為2m和3m的小路如圖所示問如何設計景觀水池的邊長,能使總占地面積最小?并求出總占地面積的最小值.21.已知集合,或.(1)若,求;(2)若,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【點睛】本題考查相等向量、垂直關系的向量表示,屬于基礎題.2、D【解析】

由題意利用韋達定理,等比數(shù)列的性質,求得a4?a7的值.【詳解】∵等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,∴a2?a9=﹣6,則a4?a7=a2?a9=﹣6,故選:D.【點睛】本題主要考查等比數(shù)列的性質及二次方程中韋達定理的應用,考查了分析問題的能力,屬于基礎題.3、B【解析】

由已知直接利用正弦定理求解.【詳解】在中,由A=45°,C=60°,c=3,由正弦定理得.故選B.【點睛】本題考查三角形的解法,考查正弦定理的應用,屬于基礎題.4、D【解析】

直接利用正弦定理得到,帶入化簡得到答案.【詳解】正弦定理:即:故選D【點睛】本題考查了正弦定理,意在考查學生的計算能力.5、B【解析】由已知g(x)=(x-2)2+1,所以其頂點為(2,1),又f(2)=2ln2∈(1,2),可知點(2,1)位于函數(shù)f(x)=2lnx圖象的下方,故函數(shù)f(x)=2lnx的圖象與函數(shù)g(x)=x2-4x+5的圖象有2個交點.6、B【解析】

利用折線圖的性質,結合各選項進行判斷,即可得解.【詳解】由某地某月1日至15日的日平均溫度變化的折線圖,得:在中,這15天日平均溫度的極差為:,故錯誤;在中,連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天,故正確;在中,由折線圖無法預測16日溫度要是否低于,故錯誤;在中,由折線圖無法預測本月溫度小于的天數(shù)是否少于溫度大于的天數(shù),故錯誤.故選.【點睛】本題考查命題真假的判斷,考查折線圖的性質等基礎知識,考查運算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結合思想,是基礎題.7、A【解析】

求出基本事件的總數(shù),以及滿足題意的基本事件數(shù)目,即可求解概率.【詳解】解:由題意任抽取2輛汽車,其速度分別為:,共15個基本事件,其中恰好有1輛汽車超速的有,,共8個基本事件,則恰好有1輛汽車超速的概率為:,故選:A.【點睛】本題考查古典概型的概率的求法,屬于基本知識的考查.8、C【解析】

通過數(shù)量積計算出夾角,然后可得到投影.【詳解】,,即,,在方向上的投影為,故選C.【點睛】本題主要考查向量的幾何背景,建立數(shù)量積方程是解題的關鍵,難度不大.9、A【解析】

因式分解求解即可.【詳解】,解得.故選:A【點睛】本題主要考查了二次不等式的求解,屬于基礎題.10、A【解析】

先設等比數(shù)列的公比為,根據(jù)題中條件求出,進而可求出結果.【詳解】設等比數(shù)列的公比為,因為,,所以,因此.故選A【點睛】本題主要考查等比數(shù)列的基本量的計算,熟記通項公式即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

從開始,直接代入公式計算,可得的值.【詳解】解:由題意得:,,,,故答案為:.【點睛】本題主要考查數(shù)列的遞推公式及數(shù)列的性質,相對簡單.12、【解析】∵,∴即,則.故答案為:.13、【解析】

首先求出圓的圓心坐標和半徑,計算圓心到直線的距離,再計算弦長即可.【詳解】圓,,圓心,半徑.圓心到直線的距離..故答案為:【點睛】本題主要考查直線與圓的位置關系中的弦長問題,熟練掌握弦長公式為解題的關鍵,屬于簡單題.14、【解析】

取半正多面體的截面正八邊形,設半正多面體的棱長為,過分別作于,于,可知,,可求出半正多面體的棱長及所有棱長和.【詳解】取半正多面體的截面正八邊形,由正方體的棱長為1,可知,易知,設半正多面體的棱長為,過分別作于,于,則,,解得,故該半正多面體的所有棱長和為.【點睛】本題考查了空間幾何體的結構,考查了空間想象能力與計算求解能力,屬于中檔題.15、【解析】

設正方形的邊長為,正方形的邊長為,分別求出陰影部分的面積和平行四邊形的面積,最后利用幾何概型公式求出概率.【詳解】設正方形的邊長為,正方形的邊長為,在長方形中,,故平行四邊形的面積為,陰影部分的面積為,所以在平行四邊形KLMN內隨機取一點,則此點取自陰影部分的概率是.【點睛】本題考查了幾何概型概率的求法,求出平行四邊形的面積是解題的關鍵.16、2017【解析】,故,由此得.【點睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項和的計算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)AB有最小值【解析】

試題分析:(Ⅰ)求點的坐標,需列出兩個獨立條件,根據(jù)解方程組解:由點是直線:上的一動點,得,由切線PA的長度為得,解得(Ⅱ)設P(2b,b),先確定圓的方程:因為∠MAP=90°,所以經過A、P、M三點的圓以MP為直徑,其方程為:,再按b整理:由解得或,所以圓過定點(Ⅲ)先確定直線方程,這可利用兩圓公共弦性質解得:由圓方程為及圓:,相減消去x,y平方項得圓方程與圓相交弦AB所在直線方程為:,相交弦長即:,當時,AB有最小值試題解析:(Ⅰ)由題可知,圓M的半徑r=2,設P(2b,b),因為PA是圓M的一條切線,所以∠MAP=90°,所以MP=,解得所以4分(Ⅱ)設P(2b,b),因為∠MAP=90°,所以經過A、P、M三點的圓以MP為直徑,其方程為:即由,7分解得或,所以圓過定點9分(Ⅲ)因為圓方程為即①圓:,即②②-①得圓方程與圓相交弦AB所在直線方程為:11分點M到直線AB的距離13分相交弦長即:當時,AB有最小值16分考點:圓的切線長,圓的方程,兩圓的公共弦方程18、(1);(2)或【解析】

(1)利用兩直線垂直,斜率之積為-1進行求解(2)將三角形的面積問題轉化成點到直線的距離公式進行求解【詳解】(1)設P點坐標為,由題意,直線AB的斜率;因為,所以直線PB存在斜率且,即,解得;故點P的坐標為;(2)設P點坐標為,P到直線AB的距離為d;由已知,直線AB的方程為;的面積.得,即,解得或;所以點P的坐標為或【點睛】兩直線垂直的斜率關系為;已知兩點坐標時,距離公式為;三角形面積問題,??赊D化為點到直線距離公式進行求解.19、(1)是;(2).【解析】

(1)依據(jù)題意,寫出遞推式,由等差數(shù)列得定義即可判斷;(2)求出,利用極限知識,求出,即可求得的值?!驹斀狻浚?)當時,點,所以,即由得,當時,,將代入,,故數(shù)列是以為公差的等差數(shù)列。(2)因為,所以,,由得,,,故,?!军c睛】本題主要考查等差數(shù)列的定義和通項公式的運用,以及數(shù)列極限的運算。20、水池一邊長為12m,另一邊為18m,總面積為最小,為.【解析】

設水池一邊長為xm,則另一邊為,表示出面積利用基本不等式求解即可.【詳解】設水池一邊長為xm,則另一邊為,總面積,當且僅當時取等號,故水池一邊長為12m,則另一邊為18m,總面積為最小,為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論