2022屆廣州市東環(huán)中學中考數學四模試卷含解析_第1頁
2022屆廣州市東環(huán)中學中考數學四模試卷含解析_第2頁
2022屆廣州市東環(huán)中學中考數學四模試卷含解析_第3頁
2022屆廣州市東環(huán)中學中考數學四模試卷含解析_第4頁
2022屆廣州市東環(huán)中學中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆廣州市東環(huán)中學中考數學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.2.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關4.如果實數a=,且a在數軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.5.等式組的解集在下列數軸上表示正確的是(

).A.

B.C.

D.6.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm7.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1058.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.249.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣510.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元11.若不等式組2x-1>3x≤a的整數解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤612.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:a3-a=14.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數y=(k為常數)的圖象上,則y1、y2、y3的大小關系為________.15.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.16.因式分解:_______________.17.已知實數a、b、c滿足+|10﹣2c|=0,則代數式ab+bc的值為__.18.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數y=(x>0)的圖象經過AO的中點C,交AB于點D,且AD=1.設點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數y=的表達式;②求經過C,D兩點的直線所對應的函數解析式;在(2)的條件下,設點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數的圖象交于點F,求△OEF面積的最大值.20.(6分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.21.(6分)隨著“互聯網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數與打車時間如表:時間(分鐘)里程數(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?22.(8分)在平面直角坐標系中,函數()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內的整點個數;②若區(qū)域內恰有4個整點,結合函數圖象,求的取值范圍.23.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數.24.(10分)如圖,已知△ABC,請用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).25.(10分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.26.(12分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.27.(12分)如圖,A(4,3)是反比例函數y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數y=的圖象于點P.求反比例函數y=的表達式;求點B的坐標;求△OAP的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】根據軸對稱圖形的概念求解.解:根據軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、A【解析】

根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.3、C【解析】試題分析:連接AR,根據勾股定理得出AR=的長不變,根據三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線4、C【解析】分析:估計的大小,進而在數軸上找到相應的位置,即可得到答案.詳解:由被開方數越大算術平方根越大,即故選C.點睛:考查了實數與數軸的的對應關系,以及估算無理數的大小,解決本題的關鍵是估計的大小.5、B【解析】【分析】分別求出每一個不等式的解集,然后在數軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數軸上表示不等式的解集,不等式的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.6、B【解析】

根據作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【詳解】解:根據作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.7、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、B【解析】

根據圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據圖象可知點P在BC上運動時,此時BP不斷增大,

由圖象可知:點P從B向C運動時,BP的最大值為5,即BC=5,

由于M是曲線部分的最低點,

∴此時BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數圖象,解題關鍵是注意結合圖象求出BC與AC的長度,本題屬于中等題型.9、C【解析】方程兩邊同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,檢驗:當x=5時,(x-1)(x+3)≠0,所以x=5是原方程的解,故選C.10、D【解析】

設y與x之間的函數關系式為y=kπx2,由待定系數法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數的應用,解答時求出函數的解析式是關鍵.11、C【解析】

首先確定不等式組的解集,利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最?。删€段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】a3-a=a(a2-1)=14、y2<y1<y2【解析】分析:設t=k2﹣2k+2,配方后可得出t>1,利用反比例函數圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結論.詳解:設t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數y=(k為常數)的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數圖象上點的坐標特征,利用反比例函數圖象上點的坐標特征求出y1、y2、y2的值是解題的關鍵.15、【解析】∵等腰直角△ABC繞點A逆時針旋轉15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.16、x3(y+1)(y-1)【解析】

先提取公因式x3,再利用平方差公式分解可得.【詳解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案為x3(y+1)(y-1).【點睛】本題主要考查提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握一般整式的因式分解的步驟--先提取公因式,再利用公式法分解.17、-1【解析】試題分析:根據非負數的性質可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.18、300【解析】

設成本為x元,標價為y元,根據已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據題意列出方程再求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)C(2,2);(2)①反比例函數解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解析】

(1)利用中點坐標公式即可得出結論;

(2)①先確定出點A坐標,進而得出點C坐標,將點C,D坐標代入反比例函數中即可得出結論;

②由n=1,求出點C,D坐標,利用待定系數法即可得出結論;

(1)設出點E坐標,進而表示出點F坐標,即可建立面積與m的函數關系式即可得出結論.【詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數解析式為;②由①知,n=1,∴C(2,2),D(4,1),設直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設點E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y軸交雙曲線于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1時,S△OEF最大,最大值為【點睛】此題是反比例函數綜合題,主要考查了待定系數法,線段的中點坐標公式,解本題的關鍵是建立S△OEF與m的函數關系式.20、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數的解析式;(2)首先延長PE交x軸于點H,現將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據題意在(2)的條件下先證明△DQT≌△ECH,再根據全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數的綜合題,解題的關鍵是熟練的掌握二次函數的相關知識點.21、(1)x=1,y=;(2)小華的打車總費用為18元.【解析】試題分析:(1)根據表格內容列出關于x、y的方程組,并解方程組.

(2)根據里程數和時間來計算總費用.試題解析:(1)由題意得,解得;(2)小華的里程數是11km,時間為14min.則總費用是:11x+14y=11+7=18(元).答:總費用是18元.22、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據整點的概念,直接寫出區(qū)域內的整點個數即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數和一次函數的綜合題,考查待定系數法求反比例函數解析式,一次函數的圖象與性質,掌握整點的概念是解題的關鍵,注意分類討論思想在解題中的應用.23、(1);(2)30°【解析】

(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;

(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質、線段垂直平分線的性質、相似三角形的判定和性質、勾股定理、等邊三角形的判定和性質.解題的關鍵是連接OE,構造直角三角形.24、見解析【解析】

分別作∠ABC和∠ACB的平分線,它們的交點O滿足條件.【詳解】解:如圖,點O為所作.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).25、(1)12;(2)1【解析】

(1)根據四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據樹狀圖即可得到共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論