2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁
2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁
2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁
2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁
2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東省菏澤市菏澤一中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若滿足條件的三角形ABC有兩個(gè),那么a的取值范圍是()A. B. C. D.2.如圖,在等腰梯形中,,于點(diǎn),則()A. B.C. D.3.若不等式的解集為,則()A. B.C. D.4.已知向量,,,則實(shí)數(shù)的值為()A. B. C.2 D.35.(2018年天津卷文)設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最大值為A.6 B.19 C.21 D.456.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.7.已知三棱柱()A. B. C. D.8.已知向量,,,且,則()A. B. C. D.9.設(shè)函數(shù)是上的偶函數(shù),且在上單調(diào)遞減.若,,,則,,的大小關(guān)系為()A. B. C. D.10.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列五個(gè)命題:①函數(shù)的一條對(duì)稱軸是;②函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;③正弦函數(shù)在第一象限為增函數(shù);④若,則,其中;⑤函數(shù)的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),則的取值范圍為.以上五個(gè)命題中正確的有(填寫所有正確命題的序號(hào))12.經(jīng)過點(diǎn),且在兩坐標(biāo)軸上的截距之和為2的直線的一般式方程為________.13.把“五進(jìn)制”數(shù)轉(zhuǎn)化為“十進(jìn)制”數(shù)是_____________14.正項(xiàng)等比數(shù)列中,為數(shù)列的前n項(xiàng)和,,則的取值范圍是____________.15.函數(shù)()的值域是__________.16.的內(nèi)角的對(duì)邊分別為,,,若的面積為,則角_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時(shí),求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.18.已知圓的圓心在線段上,圓經(jīng)過點(diǎn),且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點(diǎn),當(dāng)最小時(shí),求直線的方程及的最小值.19.已知向量,,,.(1)若,且,求x的值;(2)對(duì)于,,定義.解不等式;(3)若存在,使得,求k的取值范圍.20.已知數(shù)列滿足,數(shù)列滿足,其中為的前項(xiàng)和,且(1)求數(shù)列和的通項(xiàng)公式(2)求數(shù)列的前項(xiàng)和.21.已知直線l:(a-2)y=(3a-1)x-1(1)求證:不論實(shí)數(shù)a取何值,直線l總經(jīng)過一定點(diǎn);(2)若直線l與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求直線l的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

利用正弦定理,用a表示出sinA,結(jié)合C的取值范圍,可知;根據(jù)存在兩個(gè)三角形的條件,即可求得a的取值范圍。【詳解】根據(jù)正弦定理可知,代入可求得因?yàn)椋匀魸M足有兩個(gè)三角形ABC則所以所以選C【點(diǎn)睛】本題考查了正弦定理在解三角形中的簡(jiǎn)單應(yīng)用,判斷三角形的個(gè)數(shù)情況,屬于基礎(chǔ)題。2、A【解析】

根據(jù)等腰三角形的性質(zhì)可得是的中點(diǎn),由平面向量的加法運(yùn)算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因?yàn)?,所以是的中點(diǎn),可得,故選.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及向量平行的性質(zhì),屬于簡(jiǎn)單題.向量的運(yùn)算有兩種方法,一是幾何運(yùn)算往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標(biāo)運(yùn)算比較簡(jiǎn)單)3、D【解析】

根據(jù)一元二次不等式的解法,利用韋達(dá)定理列方程組,解方程組求得的值.【詳解】根據(jù)一元二次不等式的解法可知,是方程的兩個(gè)根,根據(jù)韋達(dá)定理有,解得,故選D.【點(diǎn)睛】本小題主要考查一元二次不等式的解集與對(duì)應(yīng)一元二次方程根的關(guān)系,考查根與系數(shù)關(guān)系,考查方程的思想,屬于基礎(chǔ)題.4、A【解析】

將向量的坐標(biāo)代入中,利用坐標(biāo)相等,即可得答案.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題考查向量相等的坐標(biāo)運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、C【解析】分析:首先畫出可行域,然后結(jié)合目標(biāo)目標(biāo)函數(shù)的幾何意義確定函數(shù)取得最大值的點(diǎn),最后求解最大值即可.詳解:繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點(diǎn)A處取得最大值,聯(lián)立直線方程:,可得點(diǎn)A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.本題選擇C選項(xiàng).點(diǎn)睛:求線性目標(biāo)函數(shù)z=ax+by(ab≠0)的最值,當(dāng)b>0時(shí),直線過可行域且在y軸上截距最大時(shí),z值最大,在y軸截距最小時(shí),z值最?。划?dāng)b<0時(shí),直線過可行域且在y軸上截距最大時(shí),z值最小,在y軸上截距最小時(shí),z值最大.6、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點(diǎn):由圖象確定函數(shù)解析式.7、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長即為球直徑,所以2R==13,即R=8、C【解析】

由可得,代入求解可得,則,進(jìn)而利用誘導(dǎo)公式求解即可【詳解】由可得,即,所以,因?yàn)?所以,則,故選:C【點(diǎn)睛】本題考查垂直向量的應(yīng)用,考查里利用誘導(dǎo)公式求三角函數(shù)值9、B【解析】

根據(jù)偶函數(shù)的定義可變形,再直接比較的大小關(guān)系,即可利用函數(shù)的單調(diào)性得出,,的大小關(guān)系.【詳解】因?yàn)楹瘮?shù)是上的偶函數(shù),所以,而,函數(shù)在上單調(diào)遞減,所以.故選:B.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)的應(yīng)用,涉及奇偶性,指數(shù)函數(shù),對(duì)數(shù)函數(shù)的單調(diào)性,以及對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②⑤【解析】試題分析:①將代入可得函數(shù)最大值,為函數(shù)對(duì)稱軸;②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,包括點(diǎn);③,③錯(cuò)誤;④利用誘導(dǎo)公式,可得不同于的表達(dá)式;⑤對(duì)進(jìn)行討論,利用正弦函數(shù)圖象,得出函數(shù)與直線僅有有兩個(gè)不同的交點(diǎn),則.故本題答案應(yīng)填①②⑤.考點(diǎn):三角函數(shù)的性質(zhì).【知識(shí)點(diǎn)睛】本題主要考查三角函數(shù)的圖象性質(zhì).對(duì)于和的最小正周期為.若為偶函數(shù),則當(dāng)時(shí)函數(shù)取得最值,若為奇函數(shù),則當(dāng)時(shí),.若要求的對(duì)稱軸,只要令,求.若要求的對(duì)稱中心的橫坐標(biāo),只要令即可.12、【解析】

由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標(biāo)軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點(diǎn)睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式13、194【解析】由.故答案為:194.14、【解析】

利用結(jié)合基本不等式求得的取值范圍【詳解】由題意知,,且,所以,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以.故答案為:【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和及性質(zhì),利用性質(zhì)結(jié)合基本不等式求最值是關(guān)鍵15、【解析】

由,根據(jù)基本不等式即可得出,然后根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出,即求出原函數(shù)的值域.【詳解】解:,當(dāng)且僅當(dāng),時(shí)取等號(hào),;原函數(shù)的值域是.故答案為:.【點(diǎn)睛】考查函數(shù)的值域的定義及求法,基本不等式的應(yīng)用,以及對(duì)數(shù)函數(shù)的單調(diào)性,增函數(shù)的定義.16、【解析】

根據(jù)三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點(diǎn)睛】本題考查余弦定理和三角形面積公式的應(yīng)用問題,關(guān)鍵是能夠配湊出符合余弦定理的形式,進(jìn)而得到所求角的三角函數(shù)值.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4;(2).【解析】

(1)當(dāng),時(shí),曲線的方程是,對(duì)絕對(duì)值內(nèi)的數(shù)進(jìn)行討論,得到四條直線圍成一個(gè)菱形,并求出面積為4;(2)對(duì)進(jìn)行討論,化簡(jiǎn)曲線方程,并與直線方程聯(lián)立,求出點(diǎn)的坐標(biāo),由得到的關(guān)系,再利用點(diǎn)到直線的距離公式求出,從而求得.【詳解】(1)當(dāng),時(shí),曲線的方程是,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,曲線圍成的區(qū)域?yàn)榱庑危涿娣e為;(2)當(dāng),時(shí),有,聯(lián)立直線可得,當(dāng),時(shí),有,聯(lián)立直線可得,由可得,即有,化為,點(diǎn)到直線距離,由題意可得,,,即,可得,,可得當(dāng),即時(shí),點(diǎn)到直線距離取得最小值.【點(diǎn)睛】解析幾何的思想方法是坐標(biāo)法,通過代數(shù)運(yùn)算解決幾何問題,本題對(duì)運(yùn)算能力的要求是比較高的.18、(1)(2)的方程為,最小為【解析】

(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點(diǎn),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最小,求解即可.【詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點(diǎn)斜式,所以過定點(diǎn).又點(diǎn)在圓內(nèi),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最小.因?yàn)?,所以的斜率,所以的方程為,即,因?yàn)?,,所以.【點(diǎn)睛】求圓的弦長的常用方法幾何法:設(shè)圓的半徑為r,弦心距為d,弦長為l,則;②代數(shù)方法:運(yùn)用韋達(dá)定理及弦長公式:==.19、(1)或(2)(3)【解析】

(1)由題,由可得,進(jìn)而求解即可;(2)由題意得到,進(jìn)而求解即可;(3)由可得,整理可得關(guān)于的函數(shù),進(jìn)而求解即可【詳解】(1)由題,,因?yàn)?所以,則,因?yàn)?所以或(2)由題,,因?yàn)?所以,當(dāng)時(shí),,因?yàn)槭且詾樽钚≌芷诘闹芷诤瘮?shù),所以(3)由(1),由題,,若,則,則,因?yàn)?所以【點(diǎn)睛】本題考查共線向量的坐標(biāo)表示,考查垂直向量的坐標(biāo)表示,考查解三角函數(shù)的不等式20、(1);(2)【解析】

(1)由題意可得,由等差數(shù)列的通項(xiàng)公式可得;由數(shù)列的遞推式,結(jié)合等比數(shù)列的定義和通項(xiàng)公式可得;(2),運(yùn)用數(shù)列的錯(cuò)位相減法求和,結(jié)合等比數(shù)列的求和公式可得所求和.【詳解】解:(1)由,同乘以得,可知是以2為公差的等差數(shù)列,而,故;又,相減得,,可知是以為公比的等比數(shù)列,而,故;(2)因?yàn)?,,,兩式相減得.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.21、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論