版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年廣東省佛山市南海一中高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形2.如圖,網(wǎng)格紙的小正方形的邊長是,在其上用粗實線和粗虛線畫出了某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.3.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.4.已知直線的傾斜角為,則()A. B. C. D.5.已知網(wǎng)格紙的各個小格均是邊長為一個單位的正方形,一個幾何體的三視圖如圖中粗線所示,則該幾何體的表面積為()A. B. C. D.6.已知命題,,若是真命題,則實數(shù)的取值范圍是()A. B. C. D.7.函數(shù)的對稱中心是()A. B. C. D.8.已知,則三個數(shù)、、由小到大的順序是()A. B.C. D.9.為了研究某大型超市開業(yè)天數(shù)與銷售額的情況,隨機抽取了5天,其開業(yè)天數(shù)與每天的銷售額的情況如表所示:開業(yè)天數(shù)1020304050銷售額/天(萬元)62758189根據(jù)上表提供的數(shù)據(jù),求得關于的線性回歸方程為,由于表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為()A.68 B.68.3 C.71 D.71.310.已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增.若實數(shù)滿足,則的最大值是()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是以為首項,為公差的等差數(shù)列,是其前項和,則數(shù)列的最小項為第___項12.觀察下列式子:你可歸納出的不等式是___________13.已知向量,若向量與垂直,則等于_______.14.函數(shù),的值域是_____.15.已知正數(shù)、滿足,則的最大值為__________.16.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,且2,,成等差數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和;18.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面積S.19.已知數(shù)列滿足,,設.(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項公式.20.已知為常數(shù)且均不為零,數(shù)列的通項公式為并且成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)設是數(shù)列前項的和,求使得不等式成立的最小正整數(shù).21.(1)從某廠生產(chǎn)的一批零件1000個中抽取20個進行研究,應采用什么抽樣方法?(2)對(1)中的20個零件的直徑進行測量,得到下列不完整的頻率分布表:(單位:mm)分組頻數(shù)頻率268合計201①完成頻率分布表;②畫出其頻率分布直方圖.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
用正弦定理化邊為角,再由誘導公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關鍵是誘導公式的應用.2、A【解析】
根據(jù)三視圖,還原空間結(jié)構(gòu)體,根據(jù)空間結(jié)構(gòu)體的特征及球、棱錐的體積公式求得總體積.【詳解】根據(jù)空間結(jié)構(gòu)體的三視圖,得原空間結(jié)構(gòu)體如下圖所示:該幾何體是由下面半球的和上面四棱錐的組成由三視圖的棱長及半徑關系,可得幾何體的體積為所以選A【點睛】本題考查了三視圖的簡單應用,空間結(jié)構(gòu)體的體積求法,屬于中檔題.3、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關鍵就是確立一個關于的方程或不等式,再根據(jù)的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.4、B【解析】
根據(jù)直線斜率與傾斜角的關系求解即可.【詳解】因為直線的傾斜角為,故直線斜率.故選:B【點睛】本題主要考查了直線的傾斜角與斜率的關系,屬于基礎題.5、B【解析】
根據(jù)三視圖還原幾何體即可.【詳解】由三視圖可知,該幾何體為一個圓柱內(nèi)切了一個圓錐,圓錐側(cè)面積為,圓柱上底面積為,圓柱側(cè)面積為,.所以選擇B【點睛】本題主要考查了三視圖,根據(jù)三視圖還原幾何體常用的方法有:在正方體或者長方體中切割.屬于中等題.6、A【解析】
由題意知,不等式有解,可得出,可得出關于實數(shù)的不等式,即可解得實數(shù)的取值范圍.【詳解】已知命題,,若是真命題,則不等式有解,,解得.因此,實數(shù)的取值范圍是.故選:A.【點睛】本題考查利用全稱命題的真假求參數(shù),涉及一元二次不等式有解的問題,考查計算能力,屬于基礎題.7、C【解析】,設是奇函數(shù),其圖象關于原點對稱,而函數(shù)的圖象可由的圖象向右平移一個單位,向下平移兩個單位得到,所以函數(shù)的圖象關于點對稱,故選C.8、C【解析】
比較三個數(shù)、、與的大小關系,再利用指數(shù)函數(shù)的單調(diào)性可得出、的大小,可得出這三個數(shù)的大小關系.【詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【點睛】本題考查指數(shù)冪的大小關系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調(diào)性來比較大?。唬?)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調(diào)性來比較大??;(3)底數(shù)和指數(shù)都不相同時,可以利用中間值法來比較大小.9、A【解析】
根據(jù)表中數(shù)據(jù)計算,再代入線性回歸方程求得,進而根據(jù)平均數(shù)的定義求出所求的數(shù)據(jù).【詳解】根據(jù)表中數(shù)據(jù),可得,代入線性回歸方程中,求得,則表中模糊不清的數(shù)據(jù)是,故選:B.【點睛】本題考查了線性回歸方程過樣本中心點的應用問題,是基礎題.10、D【解析】由圖象性質(zhì)可知,,解得,故選D。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求,利用二次函數(shù)性質(zhì)求最值即可【詳解】由題當時最小故答案為8【點睛】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎題12、【解析】
觀察三個已知式子的左邊和右邊,第1個不等式左邊可改寫成;第2個不等式左邊的可改寫成,右邊的可改寫成;第3個不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個不等式的規(guī)律.【詳解】觀察三個已知式子的左邊和右邊,第1個式子可改寫為:,第2個式子可改寫為:,第3個式子可改寫為:,所以可歸納出第個不等式是:.故答案為:.【點睛】本題考查歸納推理,考查學生分析、解決問題的能力,屬于基礎題.13、2【解析】
根據(jù)向量的數(shù)量積的運算公式,列出方程,即可求解.【詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【點睛】本題主要考查了向量的坐標運算,以及向量的垂直關系的應用,著重考查了推理與運算能力,屬于基礎題.14、【解析】
首先根據(jù)的范圍求出的范圍,從而求出值域?!驹斀狻慨敃r,,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域為故答案為:.【點睛】本題主要考查了復合函數(shù)值域的求法:首先求出內(nèi)函數(shù)的值域再求外函數(shù)的值域。屬于基礎題。15、【解析】
直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為:【點睛】本題考查了均值不等式,意在考查學生的計算能力.16、【解析】
根據(jù)題設條件,得到方程組,求得,即可得到答案.【詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【點睛】本題主要考查了等差數(shù)列的通項公式,以及等比中項的應用,其中解答中熟練利用等差數(shù)列的通項公式和等比中項公式,列出方程組求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用求解;(2)由(1)知,,差比數(shù)列,利用錯位相減法求其前n項和.【詳解】(1)由題意知成等差數(shù)列,所以①,可得②①-②得,又,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,.(2)由(1)可得,用錯位相減法得:①②①-②可得.【點睛】已知與的關系式利用公式求解錯位相減法求等差乘等比數(shù)列的前n項和.18、(1)(1)【解析】試題分析:(1)由已知利用正弦定理,兩角和的正弦公式、誘導公式化簡可得,結(jié)合,可求,進而可求的值;(1)由已知及余弦定理,平方和公式可求的值,進而利用三角形面積公式即可計算得解.試題解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,
∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:
(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.19、(1),,;(2)證明見詳解,,.【解析】
(1)根據(jù)遞推公式,賦值求解即可;(2)利用定義,求證為定值即可,由數(shù)列通項公式即可求得和.【詳解】(1)由條件可得,將代入得,,而,所以.將代入得,所以.從而,,.(2)由條件可得,即,,又,所以是首項為1,公比為3的等比數(shù)列,.因為,所以.【點睛】本題考查利用遞推關系求數(shù)列某項的值,以及利用數(shù)列定義證明等比數(shù)列,及求通項公式,是數(shù)列綜合基礎題.20、(1);(2)【解析】
(1)由,可得,,,.根據(jù)、、成等差數(shù)列,、、成等比數(shù)列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數(shù)列與等比數(shù)列的求和公式即可得出.【詳解】(1),,,,.,,成等差數(shù)列,,,成等比數(shù)列.,,,,,.聯(lián)立解得:,.(2)由(1)可得:,,由,解得..【點睛】本題考查等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.21、(1)系統(tǒng)抽樣;(2)①分布表見解析;②直方圖見解析.【解析】
(1)因需要研究的個體很多,且差異不明顯,適宜用系統(tǒng)抽樣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項化課程設計
- 二零二五版二零二五年度便利店連鎖經(jīng)營合同范本4篇
- 二零二五年度園林苗木種植與技術(shù)研發(fā)合同4篇
- 二零二五年房屋無證買賣及配套設施移交合同3篇
- 礦山井下爆破施工方案
- 2025年度智慧社區(qū)運營承包協(xié)議4篇
- 2025年項目合作商業(yè)機密保密協(xié)議范本3篇
- 2025年度綠色生態(tài)大棚蔬菜種植與技術(shù)服務全面合作協(xié)議3篇
- 2025年度個人財產(chǎn)保險合同范本下載包含意外傷害4篇
- 二零二五年度車輛抵押借款合同(含車輛交易監(jiān)管)4篇
- 2024年供應鏈安全培訓:深入剖析與應用
- 壞死性筋膜炎
- 整式的加減單元測試題6套
- 股權(quán)架構(gòu)完整
- 注塑部質(zhì)量控制標準全套
- 銀行網(wǎng)點服務禮儀標準培訓課件
- 晶體三極管資料
- 石群邱關源電路(第1至7單元)白底課件
- 鍋爐升降平臺管理
- (完整版)高考英語口語考試題目-高考英語口語題
- 管道燃氣企業(yè)安全檢查表
評論
0/150
提交評論