版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省句容高級中學2024年高一下數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則在中,正數(shù)的個數(shù)是()A.16 B.72 C.86 D.1002.已知點O是邊長為2的正三角形ABC的中心,則()A. B. C. D.3.延長正方形的邊至,使得.若動點從點出發(fā),沿正方形的邊按逆時針方向運動一周回到點,若,下列判斷正確的是()A.滿足的點必為的中點B.滿足的點有且只有一個C.的最小值不存在D.的最大值為4.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離5.已知,則的最小值是()A.2 B.6 C.2 D.26.計算的值為()A. B. C. D.7.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件8.中,角所對的邊分別為,已知向量,,且共線,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形9.設(shè)函數(shù),其中為已知實常數(shù),,則下列命題中錯誤的是()A.若,則對任意實數(shù)恒成立;B.若,則函數(shù)為奇函數(shù);C.若,則函數(shù)為偶函數(shù);D.當時,若,則().10.圓C:x2+yA.2 B.3 C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知雙曲線:的右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線于交、兩點,若,則的離心率為__________.12.在中,已知M是AB邊所在直線上一點,滿足,則________.13.如圖,在直四棱柱中,,,,分別為的中點,平面平面.給出以下幾個說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號是__________.14.如圖,已知,,任意點關(guān)于點的對稱點為,點關(guān)于點的對稱點為,則向量_______(用,表示向量)15.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛?cè)?,甲、乙兩船相距最近的距離是_____.16.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個出入口設(shè)置在點及點處,且小區(qū)里有一條平行于的小路.(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(精確到米)(2)若該扇形的半徑為,已知某老人散步,從沿走到,再從沿走到,試確定的位置,使老人散步路線最長.18.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.19.已知直線經(jīng)過點,斜率為1.(1)求直線的方程;(2)若直線與直線:的交點在第二象限,求的取值范圍.20.設(shè)向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.21.某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查.(I)求應(yīng)從小學、中學、大學中分別抽取的學校數(shù)目.(II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,(1)列出所有可能的抽取結(jié)果;(2)求抽取的2所學校均為小學的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
令,則,當1≤n≤14時,畫出角序列終邊如圖,其終邊兩兩關(guān)于x軸對稱,故有均為正數(shù),而,由周期性可知,當14k-13≤n≤14k時,Sn>0,而,其中k=1,2,…,7,所以在中有14個為0,其余都是正數(shù),即正數(shù)共有100-14=86個,故選C.2、B【解析】
直接由正三角形的性質(zhì)求出兩向量的模和夾角,由數(shù)量積定義計算.【詳解】∵點O是邊長為2的正三角形ABC的中心,∴,,∴.故選:B.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.3、D【解析】試題分析:設(shè)正方形的邊長為1,建立如圖所示直角坐標系,則的坐標為,則設(shè),由得,所以,當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;由以上討論可知,當時,可為的中點,也可以是點,所以A錯;使的點有兩個,分別為點與中點,所以B錯,當運動到點時,有最小值,故C錯,當運動到點時,有最大值,所以D正確,故選D.考點:向量的坐標運算.【名師點睛】本題考查平面向量線性運算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標化是聯(lián)系圖形與代數(shù)運算的渠道,通過構(gòu)建直角坐標系,使得向量運算完全代數(shù)化,通過加、減、數(shù)乘的運算法則,實現(xiàn)了數(shù)形的緊密結(jié)合,同時將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.4、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r5、B【解析】試題分析:因為,故.考點:基本不等式的運用,考查學生的基本運算能力.6、D【解析】
直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎(chǔ)題.7、A【解析】
“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.8、D【解析】
由向量共線的坐標表示得一等式,然后由正弦定理化邊為角,利用誘導(dǎo)公式得展開后代入原式化簡得,分類討論得解.【詳解】∵共線,∴,即,,,整理得,所以或,或或(舍去).∴三角形為直角三角形或等腰三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查向量共線的坐標表示,考查正弦定理,兩角和的正弦公式,考查三角函數(shù)性質(zhì).解題時不能隨便約分漏解.9、D【解析】
利用兩角和的余弦公式化簡表達式.對于A選項,將化簡得到的表達式代入上述表達式,可判斷出A選項為真命題.對于B選項,將化簡得到的表達式代入上述表達式,可判斷出為奇函數(shù),由此判斷出B選項為真命題.對于C選項,將化簡得到的表達式代入上述表達式,可判斷出為偶函數(shù),由此判斷出C選項為真命題.對于D選項,根據(jù)、,求得的零點的表達式,由此求得(),進而判斷出D選項為假命題.【詳解】.不妨設(shè).為已知實常數(shù).若,則得;若,則得.于是當時,對任意實數(shù)恒成立,即命題A是真命題;當時,,它為奇函數(shù),即命題B是真命題;當時,,它為偶函數(shù),即命題C是真命題;當時,令,則,上述方程中,若,則,這與矛盾,所以.將該方程的兩邊同除以得,令(),則,解得().不妨取,(且),則,即(),所以命題D是假命題.故選:D【點睛】本小題主要考查兩角和的余弦公式,考查三角函數(shù)的奇偶性,考查三角函數(shù)零點有關(guān)問題的求解,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.10、D【解析】
由點到直線距離公式,求出圓心到直線y=x的距離d,再由弦長=2r【詳解】因為圓C:x2+y2-2x=0所以圓心(1,0)到直線y=x的距離為d=1-0因此,弦長=2r故選D【點睛】本題主要考查求圓被直線所截弦長問題,常用幾何法處理,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:點睛:求雙曲線的離心率的值(或范圍)時,可將條件中提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,再根據(jù)和轉(zhuǎn)化為關(guān)于離心率e的方程或不等式,通過解方程或不等式求得離心率的值(或取值范圍).12、3【解析】
由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【詳解】因為M在直線AB上,所以可設(shè),
可得,即,又,則由與不共線,所以,解得.故答案為:3【點睛】本題考查向量的減法和向量共線的利用,屬于基礎(chǔ)題.13、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對于①,由,平面平面,則,又,所以,故①正確;對于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.14、【解析】
先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎(chǔ)題.15、【解析】
根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設(shè)經(jīng)過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應(yīng)用,難度較易.關(guān)鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.16、【解析】
A,B,C是三角形內(nèi)角,那么,代入等式中,進行化簡可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因為,所以,所以.因為,,成等比數(shù)列,所以,所以,則,整理得,解得.【點睛】本題考查正弦定理和等比數(shù)列運用,有一定的綜合性.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)445米;(2)在弧的中點處【解析】
(1)假設(shè)該扇形的半徑為米,在中,利用余弦定理求解;(2)設(shè)設(shè),在中根據(jù)正弦定理,用和表示和,進而利用和差公式和輔助角公式化簡,再根據(jù)三角函數(shù)的性質(zhì)求最值.【詳解】(1)方法一:設(shè)該扇形的半徑為米,連接.由題意,得(米),(米),在中,即,解得(米)方法二:連接,作,交于,由題意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)連接,設(shè),在中,由正弦定理得:,于是,則,所以當時,最大為,此時在弧的中點處.【點睛】本題考查正弦定理,余弦定理的實際應(yīng)用,結(jié)合了三角函數(shù)的化簡與求三角函數(shù)的最值.18、(1)x2【解析】
(1)根據(jù)三角形周長為1,結(jié)合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當直線斜率斜存在時,聯(lián)立y=kx+b【詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當直線AB的斜率不存在,此時可設(shè)A(x3,x3),B(x3,-x3).又A,B兩點在橢圓C上,∴x0∴點O到直線AB的距離d=12當直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b.設(shè)A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點O到直線AB的距離d=b綜上可知:點O到直線AB的距離d=221【點睛】本題主要考查橢圓的定義及橢圓標準方程、圓錐曲線的定值問題以及點到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關(guān);②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.19、(1);(2)【解析】
(1)由條件利用用點斜式求直線的方程.(2)聯(lián)立方程組求出直線與直線的交點坐標,再根據(jù)交點在第二象限,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度區(qū)塊鏈技術(shù)解決方案個人勞務(wù)合同4篇
- 二零二五版家政服務(wù)人員健康管理與保險協(xié)議3篇
- 水平定向鉆孔施工方案
- 2024年中班教案:《耳朵》
- 2025年金融資產(chǎn)打包收購合同模板3篇
- 二零二五年度門窗安裝工程環(huán)保評估合同8篇
- 2024年新東方初中數(shù)學初一年級寒假 滿分版 第9講 平行線的性質(zhì)與判定的綜合含答案
- 二零二五版民辦學校校長任期學生心理健康聘用合同4篇
- 2024版商業(yè)保理合同
- 玻璃鋼防腐工程施工方案
- 使用錯誤評估報告(可用性工程)模版
- 公司章程(二個股東模板)
- GB/T 19889.7-2005聲學建筑和建筑構(gòu)件隔聲測量第7部分:樓板撞擊聲隔聲的現(xiàn)場測量
- 世界奧林匹克數(shù)學競賽6年級試題
- 藥用植物學-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請表
- UL_標準(1026)家用電器中文版本
- 國網(wǎng)三個項目部標準化手冊(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評論
0/150
提交評論