版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省梅縣東山中學(xué)數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列,通項公式為,若此數(shù)列為遞增數(shù)列,則的取值范圍是A. B. C. D.2.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.3.?dāng)?shù)列滿足,則數(shù)列的前項和等于()A. B. C. D.4.己知向量,,,則“”是“”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.6.在面積為S的△ABC的邊AB上任取一點(diǎn)P,則△PBC的面積大于的概率是()A. B. C. D.7.平面與平面平行的充分條件可以是()A.內(nèi)有無窮多條直線都與平行B.直線,,且直線a不在內(nèi),也不在內(nèi)C.直線,直線,且,D.內(nèi)的任何一條直線都與平行8.用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為()A.8 B. C. D.9.已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當(dāng)時,有,且當(dāng)時,,若方程()恰有5個不同的實數(shù)解,則的取值范圍是()A. B. C. D.10.已知為兩條不同的直線,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,則;④若,,,則.其中正確的命題是()A.②③ B.①③ C.②④ D.①④二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足,,則的最小值為__________________.12.已知數(shù)列滿足且,則____________.13.如圖,點(diǎn)為正方形邊上異于點(diǎn)的動點(diǎn),將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號)(1)在平面內(nèi)存在直線與平行;(2)在平面內(nèi)存在直線與垂直(3)存在點(diǎn)使得直線平面(4)平面內(nèi)存在直線與平面平行.(5)存在點(diǎn)使得直線平面14.在正方體中,是的中點(diǎn),連接、,則異面直線、所成角的正弦值為_______.15.用數(shù)學(xué)歸納法證明“”,在驗證成立時,等號左邊的式子是______.16.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,矩形中,平面,,為上的點(diǎn),且平面,.(Ⅰ)求證:平面;(Ⅱ)求三棱錐的體積.18.已知等差數(shù)列與等比數(shù)列滿足,,且.(1)求數(shù)列,的通項公式;(2)設(shè),是否存在正整數(shù),使恒成立?若存在,求出的值;若不存在,請說明理由.19.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.20.設(shè)函數(shù),其中.(1)在實數(shù)集上用分段函數(shù)形式寫出函數(shù)的解析式;(2)求函數(shù)的最小值.21.在中,角所對的邊為.已知面積(1)若求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】因為的對稱軸為,因為此數(shù)列為遞增數(shù)列,所以.2、D【解析】
直接應(yīng)用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質(zhì),求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達(dá)式,結(jié)合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點(diǎn)睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質(zhì),考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關(guān)鍵.3、A【解析】
當(dāng)為正奇數(shù)時,可推出,當(dāng)為正偶數(shù)時,可推出,將該數(shù)列的前項和表示為,結(jié)合前面的規(guī)律可計算出數(shù)列的前項和.【詳解】當(dāng)為正奇數(shù)時,由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時,由題意可得,,兩式相加得.因此,數(shù)列的前項和為.故選:A.【點(diǎn)睛】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.4、A【解析】
先由題意,得到,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因為,,所以,若,則,所以;若,則,所以;綜上,“”是“”的充要條件.故選:A【點(diǎn)睛】本題主要考查向量共線的坐標(biāo)表示,以及命題的充要條件的判定,熟記充分條件與必要條件的概念,以及向量共線的坐標(biāo)表示即可,屬于常考題型.5、D【解析】
先求得全是正面的概率,用減去這個概率求得至少出現(xiàn)一次反面的概率.【詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【點(diǎn)睛】本小題主要考查古典概型概率計算,考查正難則反的思想,屬于基礎(chǔ)題.6、C【解析】
記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據(jù)三角形的面積關(guān)系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因為,則有;化簡得:,因為,則由三角形的相似性得,所以,事件的幾何度量為線段的長度,因為,所以的面積大于的概率.故選:C【點(diǎn)睛】本題考查幾何概型,屬于基礎(chǔ)題.常有以下一些方面需考慮幾何概型,求解時需注意一些要點(diǎn).(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域。(3)幾何概型有兩個特點(diǎn):一是無限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用"比例解法求解幾何概型的概率.7、D【解析】
利用平面與平面平行的判定定理一一進(jìn)行判斷,可得正確答案.【詳解】解:A選項,內(nèi)有無窮多條直線都與平行,并不能保證平面內(nèi)有兩條相交直線與平面平行,這無窮多條直線可以是一組平行線,故A錯誤;B選項,直線,,且直線a不在內(nèi),也不在內(nèi),直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯誤;C選項,直線,直線,且,,當(dāng)直線,同樣不能保證平面與平面平行,故C錯誤;D選項,內(nèi)的任何一條直線都與平行,則內(nèi)至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【點(diǎn)睛】本題主要考查平面與平面平行的判斷,解題時要認(rèn)真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養(yǎng).8、B【解析】
分別討論當(dāng)圓柱的高為4時,當(dāng)圓柱的高為2時,求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點(diǎn)睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.9、C【解析】當(dāng)時,有,所以,所以函數(shù)在上是周期為的函數(shù),從而當(dāng)時,,有,又,即,有易知為定義在上的偶函數(shù),所以可作出函數(shù)的圖象與直線有個不同的交點(diǎn),所以,解得,故選C.點(diǎn)睛:本題主要考查了函數(shù)的奇偶性、周期性、對稱性,函數(shù)與方程等知識的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想研究直線與函數(shù)圖象的交點(diǎn)問題,解答時現(xiàn)討論得到分段函數(shù)的解析式,然后做出函數(shù)的圖象,將方程恰有5個不同的實數(shù)解轉(zhuǎn)化為直線與函數(shù)的圖象由5個不同的交點(diǎn),由數(shù)形結(jié)合法列出不等式組是解答的關(guān)鍵.10、B【解析】
利用空間中線面平行、線面垂直、面面平行、面面垂直的判定與性質(zhì)即可作答.【詳解】垂直于同一條直線的兩個平面互相平行,故①對;平行于同一條直線的兩個平面相交或平行,故②錯;若,,,則或與為異面直線或與為相交直線,故④錯;若,則存在過直線的平面,平面交平面于直線,,又因為,所以,又因為平面,所以,故③對.故選B.【點(diǎn)睛】本題主要考查空間中,直線與平面平行或垂直的判定與性質(zhì),以及平面與平面平行或垂直的判定與性質(zhì),屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題又,故考慮用累加法求通項公式,再分析的最小值.【詳解】,故,當(dāng)且僅當(dāng)時成立.又為正整數(shù),且,故考查當(dāng)時.當(dāng)時,當(dāng)時,因為,故當(dāng)時,取最小值為.故答案為:.【點(diǎn)睛】本題主要考查累加法,求最小值時先用基本不等式,發(fā)現(xiàn)不滿足“三相等”,故考慮與相等時的取值最近的兩個正整數(shù).12、【解析】
由題得為等差數(shù)列,得,則可求【詳解】由題:為等差數(shù)列且首項為2,則,所以.故答案為:2550【點(diǎn)睛】本題考查等差數(shù)列的定義,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題13、(2)(4)【解析】
采用逐一驗證法,利用線面的位置關(guān)系判斷,可得結(jié)果.【詳解】(1)錯,若在平面內(nèi)存在直線與平行,則//平面,可知//,而與相交,故矛盾(2)對,如圖作,根據(jù)題意可知平面平面所以,作,點(diǎn)在平面,則平面,而平面,所以,故正確(3)錯,若平面,則,而所以平面,則,矛盾(4)對,如圖延長交于點(diǎn)連接,作//平面,平面,平面,所以//平面,故存在(5)錯,若平面,則又,所以平面所以,可知點(diǎn)在以為直徑的圓上又該圓與無交點(diǎn),所以不存在.故答案為:(2)(4)【點(diǎn)睛】本題主要考查線線,線面,面面之間的關(guān)系,數(shù)形結(jié)合在此發(fā)揮重要作用,屬中檔題.14、【解析】
作出圖形,設(shè)正方體的棱長為,取的中點(diǎn),連接、,推導(dǎo)出,并證明出,可得出異面直線、所成的角為,并計算出、,可得出,進(jìn)而得解.【詳解】如下圖所示,設(shè)正方體的棱長為,取的中點(diǎn),連接、,為的中點(diǎn),則,,且,為的中點(diǎn),,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【點(diǎn)睛】本題考查異面直線所成角的正弦值的計算,考查計算能力,屬于中等題.15、【解析】
根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因為左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯點(diǎn),要使問題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項的變化規(guī)律;二是相鄰兩項之間的變化規(guī)律.16、【解析】
根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【點(diǎn)睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)先證明,再證明平面;(Ⅱ)由等積法可得即可求解.【詳解】(Ⅰ)因為是中點(diǎn),又因為平面,所以,由已知,所以是中點(diǎn),所以,因為平面,平面,所以平面.(Ⅱ)因為平面,,所以平面,則,又因為平面,所以,則平面,由可得平面,因為,此時,,所以.【點(diǎn)睛】本題主要考查線面平行的判定及利用等積法求三棱錐的體積問題,屬常規(guī)考題.18、(1),.(2)存在正整數(shù),,證明見解析【解析】
(1)根據(jù)題意,列出關(guān)于d與q的兩個等式,解方程組,即可求出。(2)利用錯位相減求出,再討論求出的最小值,對應(yīng)的n值即為所求的k值?!驹斀狻浚?)解:設(shè)等差數(shù)列與等比數(shù)列的公差與公比分別為,,則,解得,于是,,.(2)解:由,即,①,②①②得:,從而得.令,得,顯然、所以數(shù)列是遞減數(shù)列,于是,對于數(shù)列,當(dāng)為奇數(shù)時,即,,,…為遞減數(shù)列,最大項為,最小項大于;當(dāng)為偶數(shù)時,即,,,…為遞增數(shù)列,最小項為,最大項大于零且小于,那么數(shù)列的最小項為.故存在正整數(shù),使恒成立.【點(diǎn)睛】本題考查等差等比數(shù)列,利用錯位相減法求差比數(shù)列的前n項和,并討論其最值,屬于難題。19、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時取等號)即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應(yīng)關(guān)系來進(jìn)行求解.20、(1);(2).【解析】
(1)令,解得的范圍,再結(jié)合的意義分段函數(shù)形式寫出函數(shù)的解析式即可.(2)利用的奇偶性,只需要考慮的情形,只需分兩種情形討論:,當(dāng)時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 9、2025年度綠色建筑模板單項勞務(wù)分包合同3篇
- 個人宅基及房屋銷售協(xié)議版B版
- 2025版門面租賃合同簽訂流程及注意事項4篇
- 游戲化教學(xué)增強(qiáng)小學(xué)生注意力的教育模式
- 2025版化妝品銷售代理合同范本6篇
- 美容院與互聯(lián)網(wǎng)平臺2025年度線上推廣服務(wù)合同4篇
- 智能化學(xué)習(xí)環(huán)境下的學(xué)生思維升級
- 二零二五年度汽車美容服務(wù)合同范本4篇
- 科技產(chǎn)品的動態(tài)視覺設(shè)計實踐分享
- 時間管理對學(xué)習(xí)態(tài)度的積極影響
- 教師招聘(教育理論基礎(chǔ))考試題庫(含答案)
- 2024年秋季學(xué)期學(xué)校辦公室工作總結(jié)
- 鋪大棚膜合同模板
- 長亭送別完整版本
- 智能養(yǎng)老院視頻監(jiān)控技術(shù)方案
- 你比我猜題庫課件
- 無人駕駛航空器安全操作理論復(fù)習(xí)測試附答案
- 建筑工地春節(jié)留守人員安全技術(shù)交底
- 默納克-NICE1000技術(shù)交流-V1.0
- 蝴蝶蘭的簡介
- 老年人心理健康量表(含評分)
評論
0/150
提交評論