版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市張堰中學高一數(shù)學第二學期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,若將它的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的圖象的一條對稱軸的方程為()A. B. C. D.2.已知圓和兩點,,.若圓上存在點,使得,則的最小值為()A. B. C. D.3.已知正項數(shù)列,若點在函數(shù)的圖像上,則()A.12 B.13 C.14 D.164.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上是單調(diào)遞減的是()A.y=-cosx B.y=lgx5.若都是正數(shù),則的最小值為().A.5 B.7 C.9 D.136.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形7.函數(shù)則=()A. B. C.2 D.08.已知a=logA.a(chǎn)<b<c B.a(chǎn)<c<b C.c<a<b D.b<c<a9.在等比數(shù)列中,若,則的值為()A. B. C. D.10.若,則下列結(jié)論不正確的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.12.已知常數(shù)θ∈(0,π2),若函數(shù)f(x)在Rf(x)=2sinπx-1≤x≤1log是________.13.設是公比為的等比數(shù)列,,令,若數(shù)列有連續(xù)四項在集合中,則=.14.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為____________.15.方程組對應的增廣矩陣為__________.16.若一個圓柱的側(cè)面展開圖是邊長為2的正方形,則此圓柱的體積為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在以、、、、、為頂點的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.18.己知角的終邊經(jīng)過點.求的值;求的值.19.如圖,在多面體中,為等邊三角形,,點為邊的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面平面;(Ⅲ)求直線與平面所成角的正弦值.20.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,求的值.21.如圖,在中,,為內(nèi)一點,.(1)若,求;(2)若,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】分析:由左加右減,得出解析式,因為解析式為正弦函數(shù),所以令,解出,對k進行賦值,得出對稱軸.詳解:由左加右減可得,解析式為正弦函數(shù),則令,解得:,令,則,故選B.點睛:三角函數(shù)圖像左右平移時,需注意要把x放到括號內(nèi)加減,求三角函數(shù)的對稱軸,則令等于正弦或余弦函數(shù)的對稱軸公式,求出x解析式,即為對稱軸方程.2、D【解析】
因為,所以點的軌跡為以為直徑的圓,故點是兩圓的交點,根據(jù)圓與圓的位置關(guān)系,即可求出.【詳解】根據(jù)可知,點的軌跡為以為直徑的圓,故點是圓和圓的交點,因此兩圓相切或相交,即,亦即.故的最小值為.故選:D.【點睛】本題主要考查圓與圓的位置關(guān)系的應用,意在考查學生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.3、A【解析】
由已知點在函數(shù)圖象上求出通項公式,得,由對數(shù)的定義計算.【詳解】由題意,,∴,∴.故選:A.【點睛】本題考查數(shù)列的通項公式,考查對數(shù)的運算.屬于基礎(chǔ)題.4、C【解析】
先判斷各函數(shù)奇偶性,再找單調(diào)性符合題意的即可?!驹斀狻渴紫瓤梢耘袛噙x項D,y=e然后,由圖像可知,y=-cosx在(0,+∞)上不單調(diào),y=lg只有選項C:y=1-x【點睛】本題主要考查函數(shù)的性質(zhì),奇偶性和單調(diào)性。5、C【解析】
把式子展開,合并同類項,運用基本不等式,可以求出的最小值.【詳解】因為都是正數(shù),所以,(當且僅當時取等號),故本題選C.【點睛】本題考查了基本不等式的應用,考查了數(shù)學運算能力.6、D【解析】
由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【詳解】由題意知,,結(jié)合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【點睛】本題考查了正弦定理和余弦定理在解三角形中的應用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關(guān)系來解決問題,屬于基礎(chǔ)題.7、B【解析】
先求得的值,進而求得的值.【詳解】依題意,,故選B.【點睛】本小題主要考查分段函數(shù)求值,考查運算求解能力,屬于基礎(chǔ)題.8、B【解析】
運用中間量0比較a?,?c【詳解】a=log20.2<log21=0,【點睛】本題考查指數(shù)和對數(shù)大小的比較,滲透了直觀想象和數(shù)學運算素養(yǎng).采取中間變量法,利用轉(zhuǎn)化與化歸思想解題.9、B【解析】
根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質(zhì),此題也可用通項公式求解.10、C【解析】
A、B利用不等式的基本性質(zhì)即可判斷出;C利用指數(shù)函數(shù)的單調(diào)性即可判斷出;D利用基本不等式的性質(zhì)即可判斷出.【詳解】A,
∵b<a<0,∴?b>?a>0,∴,正確;B,∵b<a<0,∴,正確;C,
,因此C不正確;D,,正確,綜上可知:只有C不正確,故選:C.【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.解答過程注意考慮參數(shù)的正負,確定不等號的方向是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.12、15【解析】
根據(jù)f(-1【詳解】∵函數(shù)f(x)在R上恒有f(-1∴f-∴函數(shù)周期為4.∵常數(shù)θ∈(0,π∴cos∴函數(shù)y=f(x)-cosθ-1在區(qū)間[-5,14]上零點,即函數(shù)y=f(x)?(x∈[-5,14])與直線由f(x)=2sinπx由圖可知,在一個周期內(nèi),函數(shù)y=f(x)-cos故函數(shù)y=f(x)-cosθ-1在區(qū)間故填15.【點睛】本題主要考查了函數(shù)零點的個數(shù)判斷,涉及數(shù)形結(jié)合思想在解題中的運用,屬于難題.13、【解析】
考查等價轉(zhuǎn)化能力和分析問題的能力,等比數(shù)列的通項,有連續(xù)四項在集合,四項成等比數(shù)列,公比為,=-9.14、160【解析】
∵某個年級共有980人,要從中抽取280人,∴抽取比例為280980∴此樣本中男生人數(shù)為27故答案為160.考點:本題考查了分層抽樣的應用點評:掌握分層抽樣的概念是解決此類問題的關(guān)鍵,屬基礎(chǔ)題15、【解析】
根據(jù)增廣矩陣的概念求解即可.【詳解】方程組對應的增廣矩陣為,故答案為:.【點睛】本題考查增廣矩陣的概念,是基礎(chǔ)題.16、2【解析】試題分析:設圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r=1π,故底面面積S=πr考點:圓柱的體積三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)由面面垂直的性質(zhì)定理得出平面,可得出,再推導出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導出平面,計算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進而得解.【詳解】(1)因為四邊形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面積為,,平面,所以,平面,,故.【點睛】本題考查面面垂直的證明,同時也考查了利用三棱錐體積求參數(shù),考查推理能力與計算能力,屬于中等題.18、(1)(2)【解析】
(1)直接利用三角函數(shù)的定義的應用求出結(jié)果.(2)利用同角三角函數(shù)關(guān)系式的變換和誘導公式的應用求出結(jié)果.【詳解】(1)由題意,由角的終邊經(jīng)過點,根據(jù)三角函數(shù)的定義,可得.由知,則.【點睛】本題主要考查了三角函數(shù)關(guān)系式的恒等變換,同角三角函數(shù)的關(guān)系式的變換,誘導公式的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取中點,連結(jié),利用三角形中位線定理可證明是平行四邊形,可得,由線面平行的判定定理可得結(jié)果;(Ⅱ)先證明,,可得平面,從而可得平面,由面面垂直的判定定理可得結(jié)果;(Ⅲ)取中點,連結(jié),直線與平面所成角等于直線與平面所成角,過作,垂足為,連接,為直線與平面所成角,利用直角三角形的性質(zhì)可得結(jié)果.【詳解】(I)取中點,連結(jié),是平行四邊形,平面,平面,平面.(II),又平面平面,又為等邊三角形,為邊的中點,平面由(I)可知,平面,平面平面平面.(III)取中點,連結(jié),所以直線與平面所成角即為直線與平面所成角,過作,垂足為,連接.平面平面,平面,平面.為斜線在面內(nèi)的射影,為直線與平面所成角,在中,直線與平面所成角的正弦值為.【點睛】本題主要考查線面平行、面面垂直的證明以及線面角的求解方法,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.20、(1)(2)【解析】
(1)根據(jù)與正弦定理化簡求解即可.(2)利用余弦定理以及(1)中所得的化簡求解即可.【詳解】解:(1),由正弦定理可得,即得,為三角形的內(nèi)角,.(2),由余弦定理,即.解得.【點睛】本題主要考查了正余弦定理求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《食品安全信息報告》課件
- 合伙合同糾紛權(quán)威訴訟策略
- 《民用建筑構(gòu)造概述》課件
- 2025年阿里貨運從業(yè)資格證考試一共多少題
- 2025年臨汾客貨運從業(yè)資格證考試教材
- 2025年廣州道路運輸從業(yè)資格證考試題和答案
- 2025年興安貨運上崗證模擬考試0題
- 《型曲面積分的計算》課件
- 第一單元 中國開始淪為半殖民地半封建社會 同步練習 部編版八年級歷史上冊
- 鋁單板商業(yè)步行街施工合同
- 【MOOC】學術(shù)交流英語-東南大學 中國大學慕課MOOC答案
- 2022-2023學年廣東省深圳市鹽田區(qū)六年級上學期期末英語試卷
- 家用剪刀市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預測報告
- 部編版(2024版)七年級地理上冊第六章《跨學科主題學習-探索外來食料作物傳播史》教學課件
- 《世說新語》整本書閱讀導讀
- 大學生防艾健康教育學習通超星期末考試答案章節(jié)答案2024年
- 分子生物學習題答案
- 《機械制圖》復習題庫及答案2
- 中國人民解放軍空成立紀念日課件模板
- 工商企業(yè)管理畢業(yè)論文范文(4篇)
- 2024年短劇出海白皮書-meta-202409
評論
0/150
提交評論