浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題及答案解析_第1頁
浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題及答案解析_第2頁
浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題及答案解析_第3頁
浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題及答案解析_第4頁
浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題及答案解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市南浦實驗中學中考數(shù)學全真模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.62.計算(x-l)(x-2)的結果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+23.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.4.cos30°的值為(

)A.1

B.

C.

D.5.據(jù)報道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進創(chuàng)業(yè)團隊30多家,將14400用科學記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣46.在實數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是()A.|﹣3| B.﹣2 C.0 D.π7.已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是()A. B. C.D8.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③9.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°10.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構成完全平方式的概率是()A.1B.12C.13二、填空題(共7小題,每小題3分,滿分21分)11.如圖,BD是矩形ABCD的一條對角線,點E,F(xiàn)分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.12.如圖是由大小完全相同的正六邊形組成的圖形,小軍準備用紅色、黃色、藍色隨機給每個正六邊形分別涂上其中的一種顏色,則上方的正六邊形涂紅色的概率是_______.13.如圖,已知直線l:y=x,過點(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1,過點N1作直線l的垂線交x軸于點M2,……;按此做法繼續(xù)下去,則點M2000的坐標為______________.14.已知同一個反比例函數(shù)圖象上的兩點、,若,且,則這個反比例函數(shù)的解析式為______.15.若關于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.16.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當點P運動到PA與腰垂直的位置時,點P運動的時間應為_____秒.17.已知點M(1,2)在反比例函數(shù)y=k三、解答題(共7小題,滿分69分)18.(10分)在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.19.(5分)化簡求值:,其中.20.(8分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)21.(10分)已知A=ab(a-b)-ba(a-b).化簡A;如果a、b22.(10分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調查結果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.23.(12分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調查的學員共有人;在被調查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.24.(14分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內(nèi),小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內(nèi)該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.2、B【解析】

根據(jù)多項式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點睛】本題考查了多項式與多項式的乘法運算,多項式與多項式相乘,先用一個多項式的每一項分別乘另一個多項式的每一項,再把所得的積相加.3、C【解析】

設I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據(jù)題意列出方程是解題的關鍵.4、D【解析】cos30°=.故選D.5、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】14400=1.44×1.故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、B【解析】

直接利用利用絕對值的性質化簡,進而比較大小得出答案.【詳解】在實數(shù)|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數(shù)是:-1.故選B.【點睛】此題主要考查了實數(shù)大小比較以及絕對值,正確掌握實數(shù)比較大小的方法是解題關鍵.7、D【解析】

先根據(jù)三角形的周長公式求出函數(shù)關系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關系的圖象是D選項圖象.故選:D.8、A【解析】

解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.9、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.10、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

先根據(jù)三角形中位線定理得到的長,再根據(jù)直角三角形斜邊上中線的性質,即可得到的長,進而得出計算結果.【詳解】解:∵點E,F(xiàn)分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.【點睛】本題主要考查了矩形的性質以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.12、【解析】試題分析:上方的正六邊形涂紅色的概率是,故答案為.考點:概率公式.13、(24001,0)【解析】分析:根據(jù)直線l的解析式求出,從而得到根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出然后表示出與的關系,再根據(jù)點在x軸上,即可求出點M2000的坐標詳解:∵直線l:∴∵NM⊥x軸,M1N⊥直線l,∴∴同理,…,所以,點的坐標為點M2000的坐標為(24001,0).故答案為:(24001,0).點睛:考查了一次函數(shù)圖象上點的坐標特征,根據(jù)點的坐標求線段的長度,以及如何根據(jù)線段的長度求出點的坐標,注意各相關知識的綜合應用.14、y=【解析】解:設這個反比例函數(shù)的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,所有在反比例函數(shù)上的點的橫縱坐標的積應等于比例系數(shù).同時考查了式子的變形.15、30°【解析】試題解析:∵關于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.16、7秒或25秒.【解析】考點:勾股定理;等腰三角形的性質.專題:動點型;分類討論.分析:根據(jù)等腰三角形三線合一性質可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質和勾股定理求解.17、-2【解析】k==1×(-2)=-2三、解答題(共7小題,滿分69分)18、(1)(2)【解析】

(1)由小亮打第一場,再從其余三人中隨機選取一人打第一場,求出恰好選中大剛的概率即可;(2)畫樹狀圖得出所有等可能的情況數(shù),找出小瑩和小芳伸“手心”或“手背”恰好相同的情況數(shù),即可求出所求的概率.【詳解】解:(1)∵確定小亮打第一場,∴再從小瑩,小芳和大剛中隨機選取一人打第一場,恰好選中大剛的概率為;(2)列表如下:所有等可能的情況有8種,其中小瑩和小芳伸“手心”或“手背”恰好相同且與大剛不同的結果有2個,則小瑩與小芳打第一場的概率為.【點睛】本題主要考查了列表法與樹狀圖法;概率公式.19、【解析】分析:先把小括號內(nèi)的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.詳解:原式當時,點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.20、25°【解析】

先利用正方形的性質得OA=OC,∠AOC=90°,再根據(jù)旋轉的性質得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質得∠OAF=∠OFA,然后根據(jù)三角形的內(nèi)角和定理計算∠OFA的度數(shù).【詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質.21、(1)a+bab【解析】

(1)先通分,再進行同分母的減法運算,然后約分得到原式=a+b(2)利用根與系數(shù)的關系得到a+b=【詳解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=022、(1)120,54;(2)補圖見解析;(3)660名;(4).【解析】

(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調查的總人數(shù),再用360°乘以樣本中電話人數(shù)所占比例;(2)先計算出喜歡使用短信的人數(shù),然后補全條形統(tǒng)計圖;(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學生所占的百分比即可;(4)畫樹狀圖展示所有9種等可能的結果數(shù),再找出甲乙兩名同學恰好選中同一種溝通方式的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)這次統(tǒng)計共抽查學生24÷20%=120(人),其中最喜歡用電話溝通的所對應扇形的圓心角是360°×=54°,故答案為120、54;(2)喜歡使用短信的人數(shù)為120﹣18﹣24﹣66﹣2=10(人),條形統(tǒng)計圖為:(3)1200×=660,所以估計1200名學生中最喜歡用QQ進行溝通的學生有660名;(4)畫樹狀圖為:共有9種等可能的結果數(shù),甲乙兩名同學恰好選中同一種溝通方式的結果數(shù)為3,所以甲乙兩名同學恰好選中同一種溝通方式的概率.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖和用樣本估計總體.23、(1)50,10;(2)見解析.(3)16.8萬【解析】

(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總人數(shù)為50人;再由總人數(shù)減去參加“1科”,“2科”,“4科”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論