河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省濮陽市范縣一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A. B. C. D.2.為了得到函數(shù)y=sin(2x-πA.向右平移π6個單位 B.向右平移πC.向左平移π6個單位 D.向左平移π3.圓上的一點到直線的最大距離為()A. B. C. D.4.設(shè)是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等差數(shù)列.其中正確命題的個數(shù)是()A. B. C. D.5.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形6.已知是圓上的三點,()A. B. C. D.7.已知向量a=(1,-1),bA.-1 B.0 C.1 D.28.圓心坐標(biāo)為,半徑長為2的圓的標(biāo)準方程是()A. B.C. D.9.若向量的夾角為,且,,則向量與向量的夾角為()A. B. C. D.10.三條線段的長分別為5,6,8,則用這三條線段A.能組成直角三角形 B.能組成銳角三角形C.能組成鈍角三角形 D.不能組成三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義域為的偶函數(shù),當(dāng)時,,若關(guān)于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.12.已知直線l與圓C:交于A,B兩點,,則滿足條件的一條直線l的方程為______.13.在空間直角坐標(biāo)系中,點關(guān)于原點的對稱點的坐標(biāo)為__________.14.已知正方體中,,分別為,的中點,那么異面直線與所成角的余弦值為______.15.設(shè)為等差數(shù)列的前n項和,,則________.16.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,點,點P在x軸上(1)若,求點P的坐標(biāo):(2)若的面積為10,求點P的坐標(biāo).18.已知函數(shù)為奇函數(shù),且,其中,.(1)求,的值.(2)若,,求的值.19.已知函數(shù),(1)求的值;(2)求的單調(diào)遞增區(qū)間.20.某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,100張獎券為一個開獎單位,每個開獎單位設(shè)特等獎1個,一等獎10個,二等獎50個,設(shè)一張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,可知其概率平分別為.(1)求1張獎券中獎的概率;(2)求1張獎券不中特等獎且不中一等獎的概率.21.已知在直角三角形ABC中,,(如右圖所示)(Ⅰ)若以AC為軸,直角三角形ABC旋轉(zhuǎn)一周,試說明所得幾何體的結(jié)構(gòu)特征并求所得幾何體的表面積.(Ⅱ)一只螞蟻在問題(Ⅰ)形成的幾何體上從點B繞著幾何體的側(cè)面爬行一周回到點B,求螞蟻爬行的最短距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,,.選B.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解.(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.2、A【解析】

根據(jù)函數(shù)平移變換的方法,由2x→2x-π3即2x→2(x-π【詳解】根據(jù)函數(shù)平移變換,由y=sin2x變換為只需將y=sin2x的圖象向右平移π6【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.3、D【解析】

先求出圓心到直線距離,再加上圓的半徑,就是圓上一點到直線的最大距離.【詳解】圓心(2,1)到直線的距離是,所以圓上一點到直線的最大距離為,故選D.【點睛】本題主要考查圓上一點到直線距離最值的求法,以及點到直線的距離公式.4、C【解析】

設(shè),得到,,,再利用舉反例的方式排除③【詳解】設(shè),則:,故是首項為,公比為的等比數(shù)列,①正確,故是首項為,公比為的等比數(shù)列,②正確取,則,不是等比數(shù)列,③錯誤.,故是首項為,公差為的等差數(shù)列,④正確故選:C【點睛】本題考查了等差數(shù)列,等比數(shù)列的判斷,找出反例可以快速的排除選項,簡化運算,是解題的關(guān)鍵.5、C【解析】

利用二倍角公式化簡已知表達式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因為,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點睛】本題考查三角形的形狀的判斷,余弦定理的應(yīng)用,考查計算能力,屬于中檔題.6、C【解析】

先由等式,得出,并計算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計算出的值.【詳解】由于是圓上的三點,,則,,故選C.【點睛】本題考查平面向量的數(shù)量積的計算,解題的關(guān)鍵就是要確定向量的模和夾角,考查計算能力,屬于中等題.7、C【解析】

由向量的坐標(biāo)運算表示2a【詳解】解:因為a=(1,-1),b=(-1,2故選C.【點睛】本題考查了向量的加法和數(shù)量積的坐標(biāo)運算;屬于基礎(chǔ)題目.8、C【解析】

根據(jù)圓的標(biāo)準方程的形式寫.【詳解】圓心為,半徑為2的圓的標(biāo)準方程是.故選C.【點睛】本題考查了圓的標(biāo)準方程,故選C.9、B【解析】

結(jié)合數(shù)量積公式可求得、、的值,代入向量夾角公式即可求解.【詳解】設(shè)向量與的夾角為,因為的夾角為,且,,所以,,所以,又因為所以,故選B【點睛】本題考查向量的數(shù)量積公式,向量模、夾角的求法,考查化簡計算的能力,屬基礎(chǔ)題.10、C【解析】

先求最大角的余弦,再得到三角形是鈍角三角形.【詳解】設(shè)最大角為,所以,所以三角形是鈍角三角形.故選C【點睛】本題主要考查余弦定理,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、0<a≤或a.【解析】

運用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個不同實數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域為的偶函數(shù),作出函數(shù)f(x)的圖象如圖:關(guān)于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當(dāng)0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實根,由題意,只要f(x)=a有2個實根,則由圖象可得當(dāng)0<a≤時,f(x)=a有2個實根,當(dāng)a時,f(x)=a有2個實根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用,考查方程和函數(shù)的轉(zhuǎn)化思想,運用數(shù)形結(jié)合的思想方法是解決的常用方法.12、(答案不唯一)【解析】

確定圓心到直線的距離,即可求直線的方程.【詳解】由題意得圓心坐標(biāo),半徑,,∴圓心到直線的距離為,∴滿足條件的一條直線的方程為.故答案為:(答案不唯一).【點睛】本題考查直線和圓的方程的應(yīng)用,考查學(xué)生的計算能力,屬于中檔題.13、【解析】

空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).【詳解】空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).點關(guān)于原點的對稱點的坐標(biāo)為故答案為:【點睛】本題考查了空間直角坐標(biāo)系關(guān)于原點對稱,屬于簡單題.14、【解析】

異面直線所成角,一般平移到同一個平面求解.【詳解】連接DF,異面直線與所成角等于【點睛】異面直線所成角,一般平移到同一個平面求解.不能平移時通常考慮建系,利用向量解決問題.15、54.【解析】

設(shè)首項為,公差為,利用等差數(shù)列的前n項和公式列出方程組,解方程求解即可.【詳解】設(shè)首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數(shù)列的前n項和公式,解方程的思想,屬于中檔題.16、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關(guān)鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】

(1)利用兩直線垂直,斜率之積為-1進行求解(2)將三角形的面積問題轉(zhuǎn)化成點到直線的距離公式進行求解【詳解】(1)設(shè)P點坐標(biāo)為,由題意,直線AB的斜率;因為,所以直線PB存在斜率且,即,解得;故點P的坐標(biāo)為;(2)設(shè)P點坐標(biāo)為,P到直線AB的距離為d;由已知,直線AB的方程為;的面積.得,即,解得或;所以點P的坐標(biāo)為或【點睛】兩直線垂直的斜率關(guān)系為;已知兩點坐標(biāo)時,距離公式為;三角形面積問題,??赊D(zhuǎn)化為點到直線距離公式進行求解.18、(1);(2).【解析】試題分析:(1)先根據(jù)奇函數(shù)性質(zhì)得y2=cos(2x+θ)為奇函數(shù),解得θ=,再根據(jù)解得a(2)根據(jù)條件化簡得sinα=,根據(jù)同角三角函數(shù)關(guān)系得cosα,最后根據(jù)兩角和正弦公式求sin的值試題解析:(1)因為f(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin2x·(a+2cos2x),由f=0得-(a+1)=0,即a=-1.(2)由(1)得f(x)=-sin4x,因為f=-sinα=-,即sinα=,又α∈,從而cosα=-,所以sin=sinαcos+cosαsin=×+×=.19、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,(1)將代入,利用特殊角的三角函數(shù)可得的值;(2)利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間.詳解:(Ⅰ)===(Ⅱ)由題可得,函數(shù)的單調(diào)遞增區(qū)間是點睛:本題主要考查三角函數(shù)的單調(diào)性、三角函數(shù)的恒等變換,屬于中檔題.函數(shù)的單調(diào)區(qū)間的求法:(1)代換法:①若,把看作是一個整體,由求得函數(shù)的減區(qū)間,求得增區(qū)間;②若,則利用誘導(dǎo)公式先將的符號化為正,再利用①的方法,或根據(jù)復(fù)合函數(shù)的單調(diào)性規(guī)律進行求解;(2)圖象法:畫出三角函數(shù)圖象,利用圖象求函數(shù)的單調(diào)區(qū)間.20、(1)(2)【解析】

(1)1張獎券中獎包括中特等獎、一等獎、二等獎,且、、兩兩互斥,利用互斥事件的概率加法公式求解即可;(2)“1張獎券不中特等獎且不中一等獎”的對立事件為“1張獎券中特等獎或中一等獎”,則利用互斥事件的概率公式求解即可【詳解】(1)1張獎券中獎包括中特等獎、一等獎、二等獎,設(shè)“1張獎券中獎”為事件,則,因為、、兩兩互斥,所以故1張獎券中獎的概率為(2)設(shè)“1張獎券不中特等獎且不中一等獎”為事件,則事件與“1張獎券中特等獎或中一等獎”為對立事件,所以,故1張獎券不中特等獎且不中一等獎的概率為【點睛】本題考查互斥事件的概率加法公式的應(yīng)用,考查古典概型,考查利用對立事件求概率21、(Ⅰ)幾何體為以為半徑,高的圓錐,(Ⅱ)【解析】

(Ⅰ)若以為軸,直角三角形旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,由圓錐的表面積公式,即可求出結(jié)果

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論