版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河南省南和縣數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,兩條直線被三條平行線所截,若,則()A. B. C. D.2.拋物線的頂點坐標(biāo)是()A.(2,?0) B.(-2,?0) C.(0,?2) D.(0,?-2)3.如圖,AB是⊙O直徑,若∠AOC=100°,則∠D的度數(shù)是()A.50° B.40° C.30° D.45°4.如圖,點E是△ABC的內(nèi)心,AE的延長線和△ABC的外接圓相交于點D,連接BD,CE,若∠CBD=32°,則∠BEC的大小為()A.64° B.120° C.122° D.128°5.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-36.如圖,在正方形網(wǎng)格上有兩個相似三角形△ABC和△DEF,則∠BAC的度數(shù)為()A.105° B.115° C.125° D.135°7.若在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.8.如圖,是矩形內(nèi)的任意一點,連接、、、,得到,,,,設(shè)它們的面積分別是,,,,給出如下結(jié)論:①②③若,則④若,則點在矩形的對角線上.其中正確的結(jié)論的序號是()A.①② B.②③ C.③④ D.②④9.如圖,拋物線與軸交于、兩點,是以點(0,3)為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是()A. B. C. D.10.x1,x2是關(guān)于x的一元二次方程x2-mx+m-2=0的兩個實數(shù)根,是否存在實數(shù)m使=0成立?則正確的結(jié)論是()A.m=0時成立 B.m=2時成立 C.m=0或2時成立 D.不存在11.關(guān)于的一元一次方程的解為,則的值為()A.5 B.4 C.3 D.212.下列方程中不是一元二次方程的是()A. B. C. D.二、填空題(每題4分,共24分)13.在本賽季比賽中,某運動員最后六場的得分情況如下:則這組數(shù)據(jù)的極差為_______.14.如圖,假設(shè)可以在兩個完全相同的正方形拼成的圖案中隨意取點,那么這個點取在陰影部分的概率是______.15.在一個不透明的袋子中有5個除顏色外完全相同的小球,其中綠球個,紅球個,摸出一個球不放回,混合均勻后再摸出一個球,兩次都摸到紅球的概率是________.16.如圖,點為等邊三角形的外心,連接.①___________.②弧以為圓心,為半徑,則圖中陰影部分的面積等于__________.17.漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”是我國古代數(shù)學(xué)的瑰寶.如圖所示的弦圖中,四個直角三角形都是全等的,它們的兩直角邊之比均為,現(xiàn)隨機向該圖形內(nèi)擲一枚小針,則針尖落在陰影區(qū)域的概率為__________.18.如圖,在矩形中,,對角線與相交于點,,垂足為點,且平分,則的長為_____.三、解答題(共78分)19.(8分)某校為了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:(1)補全條形統(tǒng)計圖并填空,本次調(diào)查的學(xué)生共有名,估計該校2000名學(xué)生中“不了解”的人數(shù)為.(2)“非常了解”的4人中有A1、A2兩名男生,B1、B2兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到兩名男生的概率.20.(8分)如圖1,在中,為銳角,點為射線上一點,聯(lián)結(jié),以為一邊且在的右側(cè)作正方形.(1)如果,,①當(dāng)點在線段上時(與點不重合),如圖2,線段所在直線的位置關(guān)系為,線段的數(shù)量關(guān)系為;②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;(2)如果,是銳角,點在線段上,當(dāng)滿足什么條件時,(點不重合),并說明理由.21.(8分)如圖,拋物線與軸交于,兩點.(1)求該拋物線的解析式;(2)若拋物線交軸于點,在該拋物線的對稱軸上是否存在點,使得的周長最?。咳舸嬖?,求出點的坐標(biāo);若不存在,請說明理由22.(10分)《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,是《算經(jīng)十書》中最重要的一種,成于公元一世紀(jì)左右.在其“勾股”章中有這樣一個問題:“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E,南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)H⊥AD.EG=15里,HG經(jīng)過點A,則FH等于多少里?請你根據(jù)上述題意,求出FH的長度.23.(10分)把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=16cm,請求出球的半徑.24.(10分)如圖,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF.求證:BF=DE.25.(12分)如圖,在中,,在,上取一點,以為直徑作,與相交于點,作線段的垂直平分線交于點,連接.(1)求證:是的切線;(2)若,的半徑為.求線段與線段的長.26.天貓商城某網(wǎng)店銷售童裝,在春節(jié)即將將來臨之際,開展了市場調(diào)查發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件;如果每件童裝降價1元,那么平均每天可售出2件.(1)假設(shè)每件童裝降價元時,每天可銷售件,每件盈利元;(用含人代數(shù)式表示)(2)每件童裝降價多少元時,平均每天盈利最多?每天最多盈利多少元?
參考答案一、選擇題(每題4分,共48分)1、D【解析】先根據(jù)平行線分線段成比例定理求出DF的長,然后可求出BF的長.【詳解】,,即,解得,,,故選:.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.2、A【分析】依據(jù)拋物線的解析式即可判斷頂點坐標(biāo).【詳解】解:∵拋物線,∴拋物線的頂點坐標(biāo)為(2,0).故選A.【點睛】掌握拋物線y=a(x-h)2+k的頂點坐標(biāo)為(h,k)是解題的關(guān)鍵.3、B【分析】根據(jù)∠AOB=180°,∠AOC=100°,可得出∠BOC的度數(shù),最后根據(jù)圓周角∠BDC與圓心角∠BOC所對的弧都是弧BC,即可求出∠BDC的度數(shù).【詳解】解:∵AB是⊙O直徑,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所對的圓周角是∠BDC,圓心角是∠BOC,∴;故答案選B.【點睛】本題考查同圓或等圓中,同弧或等弧所對的圓周角是圓心角的一半,在做題時遇到已知圓心角,求圓周角的度數(shù),可以通過計算,得出相應(yīng)的圓心角的度數(shù),即可得出圓周角的度數(shù).4、C【分析】根據(jù)圓周角定理可求∠CAD=32°,再根據(jù)三角形內(nèi)心的定義可求∠BAC,再根據(jù)三角形內(nèi)角和定理和三角形內(nèi)心的定義可求∠EBC+∠ECB,再根據(jù)三角形內(nèi)角和定理可求∠BEC的度數(shù).【詳解】在⊙O中,∵∠CBD=32°,
∴∠CAD=32°,
∵點E是△ABC的內(nèi)心,
∴∠BAC=64°,
∴∠EBC+∠ECB=(180°-64°)÷2=58°,
∴∠BEC=180°-58°=122°.
故選:C.【點睛】本題考查了三角形的內(nèi)心,圓周角定理,三角形內(nèi)角和定理,關(guān)鍵是得到∠EBC+∠ECB的度數(shù).5、D【解析】先移項,然后利用因式分解法求解.【詳解】解:(1)x2=-1x,
x2+1x=0,
x(x+1)=0,
解得:x1=0,x2=-1.
故選:D.【點睛】本題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解題的關(guān)鍵.6、D【分析】根據(jù)相似三角形的對應(yīng)角相等即可得出.【詳解】∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故選:D.【點睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是找到對應(yīng)角7、A【解析】根據(jù)二次根式有意義的條件:被開方數(shù)≥0和分式有意義的條件:分母≠0,列出不等式,解不等式即可.【詳解】解:由題意可知:解得:故選A.【點睛】此題考查的是二次根式有意義的條件和分式有意義的條件,掌握二次根式有意義的條件:被開方數(shù)≥0和分式有意義的條件:分母≠0是解決此題的關(guān)鍵.8、D【分析】根據(jù)三角形面積公式、矩形性質(zhì)及相似多邊形的性質(zhì)得出:①矩形對角線平分矩形,S△ABD=S△BCD,只有P點在BD上時,S?+S?=S?+S4;②根據(jù)底邊相等的兩個三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據(jù)底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據(jù)相似四邊形判定和性質(zhì),對應(yīng)角相等、對應(yīng)邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點P在對角線上.【詳解】解:①當(dāng)點P在矩形的對角線BD上時,S?+S?=S?+S4.但P是矩形ABCD內(nèi)的任意一點,所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項錯誤;④過點P分別作PF⊥AD于點F,PE⊥AB于點E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點在矩形的對角線上,選項④正確.故選:D【點睛】本題考查了三角形面積公式的應(yīng)用,相似多邊形的判定和性質(zhì),用相似多邊形性質(zhì)對應(yīng)邊成比例是解決本題的難點.9、C【分析】根據(jù)拋物線解析式可求得點A(-4,0),B(4,0),故O點為AB的中點,又Q是AP上的中點可知OQ=BP,故OQ最大即為BP最大,即連接BC并延長BC交圓于點P時BP最大,進而即可求得OQ的最大值.【詳解】∵拋物線與軸交于、兩點∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中點,O是AB的中點∴OQ為△ABP中位線,即OQ=BP又∵P在圓C上,且半徑為2,∴當(dāng)B、C、P共線時BP最大,即OQ最大此時BP=BC+CP=7OQ=BP=.【點睛】本題考查了勾股定理求長度,二次函數(shù)解析式求點的坐標(biāo)及線段長度,中位線,與圓相離的點到圓上最長的距離,解本題的關(guān)鍵是將求OQ最大轉(zhuǎn)化為求BP最長時的情況.10、A【解析】∵x1,x2是關(guān)于x的一元二次方程x2-bx+b-2=0的兩個實數(shù)根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,則故滿足條件的b的值為0故選A.11、D【分析】滿足題意的有兩點,一是此方程為一元一次方程,即未知數(shù)x的次數(shù)為1;二是方程的解為x=1,即1使等式成立,根據(jù)兩點列式求解.【詳解】解:根據(jù)題意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故選:D.【點睛】本題考查一元一次方程的定義及方程解的定義,對定義的理解是解答此題的關(guān)鍵.12、C【分析】根據(jù)一元二次方程的定義進行排除選擇即可,一元二次方程的關(guān)鍵是方程中只包含一個未知數(shù),且未知數(shù)的指數(shù)為2.【詳解】根據(jù)一元二次方程的定義可知含有一個未知數(shù)且未知數(shù)的指數(shù)是2的方程為一元二次方程,所以A,B,D均符合一元二次方程的定義,C選項展開移項整理后不含有未知數(shù),不符合一元二次方程的定義,所以錯誤,故選C.【點睛】本題考查的是一元二次方程的定義,熟知此定義是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】極差是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差.極差=最大值?最小值,根據(jù)極差的定義即可解答.【詳解】解:由題意可知,極差為28?12=1,
故答案為:1.【點睛】本題考查了極差的定義,解題時牢記定義是關(guān)鍵.14、【分析】先設(shè)一個陰影部分的面積是x,可得整個陰影面積為3x,整個圖形的面積是7x,再根據(jù)幾何概率的求法即可得出答案.【詳解】設(shè)一個陰影部分的面積是x,∴整個陰影面積為3x,整個圖形的面積是7x,∴這個點取在陰影部分的概率是=,故答案為:【點睛】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.15、【分析】列舉出所有情況,看兩次都摸到紅球的情況占總情況的多少即可.【詳解】畫樹狀圖圖如下:∴一共有20種情況,有6種情況兩次都摸到紅球,∴兩次都摸到紅球的概率是.故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、120【分析】①連接OC利用等邊三角形的性質(zhì)可得出,可得出的度數(shù)②陰影部分的面積即求扇形AOC的面積,利用面積公式求解即可.【詳解】解:①連接OC,∵O為三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴陰影部分的面積即求扇形AOC的面積∵∴陰影部分的面積為:.【點睛】本題考查的知識點有等邊三角形外心的性質(zhì),全等三角形的判定及其性質(zhì)以及扇形的面積公式,利用三角形外心的性質(zhì)得出OA=OB=OC是解題的關(guān)鍵.17、【解析】分析:設(shè)勾為2k,則股為3k,弦為k,由此求出大正方形面積和陰影區(qū)域面積,由此能求出針尖落在陰影區(qū)域的概率.詳解:設(shè)勾為2k,則股為3k,弦為k,∴大正方形面積S=k×k=13k2,中間小正方形的面積S′=(3?2)k?(3?2)k=k2,故陰影部分的面積為:13k2-k2=12k2∴針尖落在陰影區(qū)域的概率為:.故答案為.點睛:此題主要考查了幾何概率問題,用到的知識點為:概率=相應(yīng)的面積與總面積之比.18、.【分析】由矩形的性質(zhì)可得AO=CO=BO=DO,可證△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的長.【詳解】解:∵四邊形是矩形∴,∵平分∴,且,,∴≌()∴,且∴,∴,∵,∴,∴故答案為.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,熟練運用矩形的性質(zhì)是本題的關(guān)鍵.三、解答題(共78分)19、(1)圖詳見解析,50,600;(2).【分析】(1)由“非常了解”的人數(shù)及其所占百分比求得總?cè)藬?shù),繼而由各了解程度的人數(shù)之和等于總?cè)藬?shù)求得“不了解”的人數(shù),用總?cè)藬?shù)乘以樣本中“不了解”人數(shù)所占比例可得;(2)分別用樹狀圖和列表兩種方法表示出所有等可能結(jié)果,從中找到恰好抽到2名男生的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為4÷8%=50人,則不了解的學(xué)生人數(shù)為50﹣(4+11+20)=15人,∴估計該校2000名學(xué)生中“不了解”的人數(shù)約有2000×=600人,補圖如下:故答案為:50、600;(2)畫樹狀圖如下:共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個,∴P(恰好抽到2名男生)==.【點睛】本題考查了列表法與樹狀圖法、扇形統(tǒng)計圖、條形統(tǒng)計圖;通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.20、(1)①垂直,相等;②見解析;(2)見解析.【分析】(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)過點A作AG⊥AC交CB或CB的延長線于點G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,證得AC=AG,根據(jù)(1)的結(jié)論于是得到結(jié)果.【詳解】(1)①正方形ADEF中,AD=AF.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB與△FAC中,,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案為垂直、相等;②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD與△CAF中,∵,∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;(2)當(dāng)∠ACB=45°時,CF⊥BD(如圖).理由:過點A作AG⊥AC交CB的延長線于點G,則∠GAC=90°.∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG.在△GAD與△CAF中,,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【點睛】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),余角的性質(zhì),過點A作AG⊥AC交CB的延長線于點G構(gòu)造全等三角形是解題的關(guān)鍵.21、(1);(2)存在,當(dāng)?shù)闹荛L最小時,點的坐標(biāo)為.【分析】(1)直接利用待定系數(shù)求出二次函數(shù)解析式即可;
(2)首先求出直線BC的解析式,再利用軸對稱求最短路線的方法得出答案.【詳解】(1)拋物線與軸交于兩點解得:該拋物線的解析式為(2)該拋物線的對稱軸上存在點,使得的周長最?。缃鈭D所示,作點關(guān)于拋物線對稱軸的對稱點,連接,交對稱軸于點,連接,點關(guān)于拋物線對稱軸的對稱點,且,交對稱軸于點,的周長為,為拋物線對稱軸上一點,的周長,當(dāng)點處在解圖位置時,的周長最?。谥?,當(dāng)時,,,,拋物線的對稱軸為直線,點是點關(guān)于拋物線對稱軸直線的對稱點,且.設(shè)過點兩點的直線的解析式為:,在直線上,,解得:,直線的解析式為:,拋物線對稱軸為直線,且直線與拋物線對稱軸交于點,在中,當(dāng)時,,,在該拋物線的對稱軸上存在點,使得的周長最小,當(dāng)?shù)闹荛L最小時,點的坐標(biāo)為【點睛】此題主要考查了二次函數(shù)綜合應(yīng)用以及待定系數(shù)法求一次函數(shù)、二次函數(shù)解析式等知識,能正確理解題意是解題關(guān)鍵.22、1.1里【分析】通過證明△HFA∽△AEG,然后利用相似比求出FH即可.【詳解】∵四邊形ABCD是矩形,EG⊥AB,F(xiàn)H⊥AD,∴∠HFA=∠DAB=∠AEG=90°,∴FA∥EG.∴∠HAF=∠G.∴△HFA∽△AEG,∴=,即=,解得FH=1.1.答:FH等于1.1里.【點睛】本題考查了相似三角形的應(yīng)用:利用視點和盲區(qū)的知識構(gòu)建相似三角形,用相似三角形對應(yīng)邊的比相等的性質(zhì)求線段的長度.23、10cm【分析】取EF的中點M,作MN⊥AD交BC于點N,則MN經(jīng)過球心O,連接OF,設(shè)OF=x,則OM=16?x,MF=8,然后在中利用勾股定理求得OF的長即可.【詳解】解:如圖,取EF的中點M,作MN⊥AD交BC于點N,則MN經(jīng)過球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=16,設(shè)OF=x,則OM=16-x,MF=8,∴在中,,即,解得:x=10,答:球的半徑為10cm.【點睛】本題主要考查了垂徑定理,矩形的判定與性質(zhì)及勾股定理的知識,解題的關(guān)鍵是正確作出輔助線構(gòu)造直角三角形.24、詳見解析.【分析】由題意根據(jù)DE⊥AC,BF⊥AC可以證明∠DE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度汽車租賃公司與個人短期自駕游服務(wù)協(xié)議3篇
- 二零二五年度養(yǎng)殖場勞務(wù)合同(養(yǎng)殖場環(huán)保設(shè)施建設(shè))3篇
- 2025年度跨境電商業(yè)務(wù)承包合同3篇
- 2025年度旅游套餐分期付款購買合同3篇
- 2025年度農(nóng)產(chǎn)品出口業(yè)務(wù)委托收購及代理協(xié)議3篇
- 2025年度停車場車位資源優(yōu)化配置合同3篇
- 2025年度體育俱樂部兼職教練員聘用合同書3篇
- 二零二五年度籃球球員轉(zhuǎn)會合同變更通知3篇
- 二零二五年度公司銷售業(yè)務(wù)員協(xié)議書:環(huán)保建筑材料銷售服務(wù)合同3篇
- 二零二五年度酒店前臺禮儀與客戶滿意度勞動合同3篇
- 中國藥典無菌、微生物限度和細(xì)菌內(nèi)毒素檢查方法學(xué)驗證內(nèi)容詳解
- 《實用日本語應(yīng)用文寫作》全套電子課件完整版ppt整本書電子教案最全教學(xué)教程整套課件
- 公司員工手冊-全文(完整版)
- 鍋爐習(xí)題帶答案
- 土木工程課程設(shè)計38281
- 農(nóng)村宅基地地籍測繪技術(shù)方案
- 液壓爬模作業(yè)指導(dǎo)書
- 劇院的建筑設(shè)計規(guī)范標(biāo)準(zhǔn)
- 遺傳分析的一個基本原理是DNA的物理距離和遺傳距離方面...
- 安全生產(chǎn)標(biāo)準(zhǔn)化管理工作流程圖
- 初一英語單詞辨音專項練習(xí)(共4頁)
評論
0/150
提交評論