![圓錐曲線的工作總結(6篇)_第1頁](http://file4.renrendoc.com/view3/M00/23/13/wKhkFmZ8wWmAY-kVAAP1L945QHE017.jpg)
![圓錐曲線的工作總結(6篇)_第2頁](http://file4.renrendoc.com/view3/M00/23/13/wKhkFmZ8wWmAY-kVAAP1L945QHE0172.jpg)
![圓錐曲線的工作總結(6篇)_第3頁](http://file4.renrendoc.com/view3/M00/23/13/wKhkFmZ8wWmAY-kVAAP1L945QHE0173.jpg)
![圓錐曲線的工作總結(6篇)_第4頁](http://file4.renrendoc.com/view3/M00/23/13/wKhkFmZ8wWmAY-kVAAP1L945QHE0174.jpg)
![圓錐曲線的工作總結(6篇)_第5頁](http://file4.renrendoc.com/view3/M00/23/13/wKhkFmZ8wWmAY-kVAAP1L945QHE0175.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
圓錐曲線的工作總結(6篇)舍棄太難、太偏的題目,得把握基礎知識。首先以中低檔的題訓練為主,打好基礎,再做難題就順理成章,得心應手。難度大的題教學中一定要循序漸進,千萬不能急于求成,可將題目分解,從學生的認知基礎、認知能力出發(fā),先做與之有關的變形題,在層層遞進,漫漫過度到本題的解決。
說圓錐曲線難,主要的是壓軸題目的后兩問,第一問和前面的選擇和填空也是基礎的題目。要握基礎知識,不可拔苗助長。
就是在高考的時候我們也要學會適當?shù)姆艞?。他說為部分尖子生準備的,但并不是說我們一般的學生在平時就可以放棄了。
圓錐曲線的工作總結第2篇
高中數(shù)學總復習“圓錐曲線”這一章是平面解析幾何的內容,以“橢圓”和“雙曲線”和“拋物線”這三種曲線作為研究對象,通過引進坐標系,借助“數(shù)形結合”思想,來研究曲線本身的方程和簡單幾何性質,以及直線與曲線的位置關系及弦長等問題。
我們知道“解析法”思想始終貫穿在這全章的每個知識點,同時“轉化、討論”思想也相映其中,無形中增添了數(shù)學的魅力以及優(yōu)化了知識結構。從學生角度而言,大多數(shù)學生普遍反映平面解析幾何的學習是不輕松的、做題就更困難了。這章公式是多,而且內容較抽象,計算量非常大,所以難度就大大增加,進而給學習帶來了挑戰(zhàn)及困惑。關于公式,不少學生仍然采用的是傳統(tǒng)的學習方式:死記硬背,機械模仿,導致在解題中往往碰壁而影響了學習興趣及積極性。所以就有了“解析幾何”是高中階段最難的內容。但是用代數(shù)方法研究幾何思路清晰,可以充分運用各種公式解題,特別要注意尋找題目中或者曲線本身所含的等量關系,解題方法就自然和容易了。當然,對于高考中這道大題來說“運算量大,解題過程繁瑣,結果容易出錯”等等,無疑也影響了解題的質量及效率。如何解決上述矛盾?如何讓學生在高考中多得分呢?經過反思:
一、我們首先要解決“公式”的問題。新課程理念強調:公式教學,不僅要重視公式的應用,教師更要充分展示公式的背景,與學生一道經歷公式的形成過程,同時在應用中鞏固公式。在推導公式的過程中,要讓學生充分體驗推導中所體現(xiàn)的數(shù)學思想、方法,從中學會學習,樂于學習。我在教學過程中也是遵循上述思路開展教學的,舉得效果還不錯。還有,我就是帶領學生一起歸納類比,從而加深印象,再要求學生完成復習小結上的那個表格,避免學生解題中公式的張冠李戴問題。再有,在引導中,老師可以形象的指出各種曲線的特點,比如在講雙曲線時可以用一首《悲傷的雙曲線》歌曲來讓學生記得只有雙曲線才有漸近線。避免了學習過程相當枯燥及乏味,進而失去了學習積極性。
二、我們要培養(yǎng)學生在考試中的解題策略,并抓出重點學習,歸納方法。這里的內容多、繁,如果有了主次之分就可以稍微輕松點了。在高考中,這里分數(shù)在17分左右,但是我們要去研究出題的模式,大多會考曲線的定義和韋達定理,還有解題關鍵是要用方程思想,列出“等量關系”。所以我們不會做的時候不妨看能不能用定義的等量關系,作為大題,第一問一般不難,不妨把前面的分數(shù)拿下來,再想辦法把步驟寫詳細點,爭取盡可能多的拿步驟分,因為這里的計算量會很大,所以我們要避免計算錯誤而導致不得分。三.教學中還應考慮學生在掌握知識的同時,在感情、意志、態(tài)度等方面也能協(xié)調發(fā)展。學生只有不畏難了,才能數(shù)學學好。
圓錐曲線的工作總結第3篇
接手高三39班已有一個月的時間,登上講臺的第一節(jié)課復習的是《橢圓的標準方程及其性質》,圓錐曲線對于高中生來說既是難點也是重點,根據(jù)本班學生一個月以來的學習情況及上課表現(xiàn),現(xiàn)總結如下:
(一)注意準確地把握教學要求
從學生的學習規(guī)律來說,訓練不能一次完成,要循序漸進,打好基礎才能有較大的發(fā)展余地,急于求成是不可取的;學生的基礎、興趣、志向都是不同的,要根據(jù)學生的實際提出恰當?shù)慕虒W要求,這樣學生才有學習的積極性,才能使學生達到預定的教學要求。
(二)注意形數(shù)結合的教學
解析幾何的特點就是數(shù)形結合,而形數(shù)結合的思想是一種重要的數(shù)學思想,是教學大綱中要求學生學習的內容之一,所以在這一章的教學過程中,要時刻注意這種數(shù)學思想的教學,并注意以下幾點。
1.注意訓練學生將幾何圖形的特征,用數(shù)或式表達出來,反過來,要使他們能根據(jù)點的坐標或曲線的方程,確定點的位置或曲線的性質,使學生能比較順利地將形的問題轉化為數(shù)或式的問題,將數(shù)或式的問題轉化為形的問題。
2.注意在解決問題的過程中,充分利用圖形。學生在解解折幾何的題目時,往往在得到曲線的方程以后就把圖形拋到一邊去了,不再利用圖形,忽視了圖形直觀對啟發(fā)思路的作用。例如,巳知過拋物線焦點的直線與拋物線交于兩點,求這兩點的距離。解這個題目如果單純用代數(shù)方法,可以完全不用圖形;可是借助圖形可以便問題變得簡單。在解決解析幾何的問題中,充分利用圖形,有時不僅簡單,而且能開闊思路。所以本章的教材,比較強調畫圖,教學中也要注意強調圖形的作用。
(三)注意與初中數(shù)學的銜接
本章的教學離不開根式的化簡和解二元二次方程組,由于義務教育初中數(shù)學中對這兩部分內容降低了要求,所以學生這方面的基礎較差。解決這個問題有兩個思路,一是在這一章的前面集中補講這些內容,二是在用到這些知識的時候邊用邊講,新教材采取了后一種辦法。這樣處理是基于以下幾點考慮,第一,集中補課會造成前后知識不銜接,第二,費時較多,第三,根式化簡的基本方法和解二元二次方程組的基本思想初中都已經學過,這一章的問題雖然稍復雜一些,但思想和方法都是一樣的,只要教學時間稍寬余些,結合有關知識的教學,適當?shù)刈餍┲v解和說明,問題應可以解決。
圓錐曲線的工作總結第4篇
圓錐曲線知識點總結
圓錐曲線的應用
【考點透視】
一、考綱指要
1.會按條件建立目標函數(shù)研究變量的最值問題及變量的取值范圍問題,注意運用“數(shù)形結合”、“幾何法”求某些量的最值.
2.進一步鞏固用圓錐曲線的定義和性質解決有關應用問題的方法.
二、命題落點
1.考查地理位置等特殊背景下圓錐曲線方程的應用,修建公路費用問題轉化為距離最值問題數(shù)學模型求解,如例1;
2.考查直線、拋物線等基本知識,考查運用解析幾何的方法分析問題和解決問題的能力,如例2;
3.考查雙曲線的概念與方程,考查考生分析問題和解決實際問題的能力,如例3.
【典例精析】
例1:(?福建)如圖,B地在A地的正東方向4km處,C地在B地的北偏東300方向2km處,河流的沿岸PQ(曲線)上任意一點到A的距離比到B的距離遠2km.現(xiàn)要在曲線PQ上選一處M建一座碼頭,向B、C兩地轉運貨物.經測算,從M到B、M到C修建公路的費用分別是a萬元/km、2a萬元/km,那么修建這兩條公路的總費用最低是()
A.(2-2)a萬元萬元
C.(2+1)a萬元D.(2+3)a萬元
解析:設總費用為y萬元,則y=a?MB+2a?MC
∵河流的沿岸PQ(曲線)上任意一點到A的距離比到B的距離遠2km.,
∴曲線PG是雙曲線的一支,B為焦點,且a=1,c=2.
過M作雙曲線的焦點B對應的準線l的垂線,垂足為D(如圖).由雙曲線的第二定義,得=e,即MB=2MD.
∴y=a?2MD+2a?MC=2a?(MD+MC)≥2a?CE.(其中CE是點C到準線l的垂線段).
∵CE=GB+BH=(c-)+BC?cos600=(2-)+2×=.∴y≥5a(萬元).
答案:B.
例2:(2022?北京,理17)如圖,過拋物線y2=2px(p>0)上一定點P(x0,y0)(y0>0),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2).
(1)求該拋物線上縱坐標為的點到其焦點F的距離;
(2)當PA與PB的斜率存在且傾斜角互補時,
求的值,并證明直線AB的斜率是非零常數(shù).
解析:(1)當y=時,x=.
又拋物線y2=2px的準線方程為x=-,由拋物線定義得,
所求距離為.
(2)設直線PA的斜率為kPA,直線PB的斜率為kPB.
由y12=2px1,y02=2px0,相減得:,
故.同理可得,
由PA、PB傾斜角互補知,即,
所以,故.
設直線AB的斜率為kAB,由,,相減得,所以.將代入得,
所以kAB是非零常數(shù).
例3:(2022?廣東)某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其他兩觀測點晚4s.已知各觀測點到該中心的距離都是1020m,試確定該巨響發(fā)生的位置.(假定當時聲音傳播的速度為340m/s,相關各點均在同一平面上)
解析:如圖,以接報中心為原點O,正東、正北方向為x軸、y軸正向,建立直角坐標系.設A、B、C分別是西、東、北觀測點,則A(-1020,0),B(1020,0),C(0,1020).
設P(x,y)為巨響發(fā)生點,由A、C同時聽到巨響聲,得|PA|=|PC|,
故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點比A點晚4s聽到爆炸聲,故|PB|-|PA|=340×4=1360.
由雙曲線定義知P點在以A、B為焦點的雙曲線上,
依題意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,
故雙曲線方程為.用y=-x代入上式,得x=±680,
∵|PB|>|PA|,∴x=-680,y=680,即P(-680,680),故PO=680.
答:巨響發(fā)生在接報中心的西偏北450距中心680m處.
【常見誤區(qū)】
1.圓錐曲線實際應用問題多帶有一定的實際生活背景,考生在數(shù)學建模及解模上均不同程度地存在著一定的困難,回到定義去,將實際問題與之相互聯(lián)系,靈活轉化是解決此類難題的關鍵;
2.圓錐曲線的定點、定量、定值等問題是隱藏在曲線方程中的固定不變的性質,考生往往只能浮于表面分析問題,而不能總結出其實質性的結論,致使問題研究徘徊不前,此類問題解決需注意可以從特殊到一般去逐步歸納,并設法推導論證.
【基礎演練】
1.(?重慶)若動點在曲線上變化,則的最大值為()A.B.
C.
2.(?全國)設,則二次曲線的離心率的取值范圍為()A..D.
3.(2022?精華教育三模)一個酒杯的軸截面是一條拋物線的一部分,它
的方程是x2=2y,y∈[0,10]在杯內放入一個清潔球,要求清潔球能
擦凈酒杯的最底部(如圖),則清潔球的最大半徑為()
A.C.
4.(2022?泰州三模)在橢圓上有一點P,F1、F2是橢圓的左右焦點,△F1PF2為直角三角形,則這樣的點P有()
個個個個
5.(2022?湖南)設F是橢圓的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...組成公差為d的等差數(shù)列,則d的取值范圍為.
6.(2022?上海)教材中“坐標平面上的直線”與“圓錐曲線”兩章內容體現(xiàn)出解析幾何的本質是.
7.(2022?浙江)已知雙曲線的中心在原點,
右頂點為A(1,0),點P、Q在雙曲線的右支上,
點M(m,0)到直線AP的距離為1,
(1)若直線AP的斜率為k,且|k|?[],
求實數(shù)m的取值范圍;
(2)當m=+1時,△APQ的內心恰好是點M,
求此雙曲線的方程.
8.(2022?上海)如圖,直線y=x與拋物
線y=x2-4交于A、B兩點,線段AB的垂直平
分線與直線y=-5交于Q點.
(1)求點Q的坐標;
(2)當P為拋物線上位于線段AB下方
(含A、B)的動點時,求ΔOPQ面積的最大值.
9.(2022?北京春)10月15日9時,“神舟”五號載人飛船發(fā)射升空,于9時9分50秒準確進入預定軌道,開始巡天飛行.該軌道是以地球的中心為一個焦點的橢圓.選取坐標系如圖所示,橢圓中心在原點.近地點A距地面200km,遠地點B距地面350km.已知地球半徑R=6371km.
(1)求飛船飛行的橢圓軌道的方程;
(2)飛船繞地球飛行了十四圈后,于16日5時59分返回艙與推進艙分離,結束巡天飛行,飛船共巡天飛行了約,問飛船巡
天飛行的平均速度是多少km/s?(結果精確
到1km/s)(注:km/s即千米/秒)
圓錐曲線的工作總結第5篇
雙曲線方程
1.雙曲線的第一定義:
⑴①雙曲線標準方程:.一般方程:.
⑵①i.焦點在x軸上:
頂點:焦點:準線方程漸近線方程:或
ii.焦點在軸上:頂點:.焦點:.準線方程:.漸近線方程:或,參數(shù)方程:或.
②軸為對稱軸,實軸長為2a,虛軸長為2b,焦距2c.③離心率.④準線距(兩準線的距離);通徑.⑤參數(shù)關系.⑥焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點)
“長加短減”原則:
構成滿足(與橢圓焦半徑不同,橢圓焦半徑要帶符號計算,而雙曲線不帶符號)
⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.
⑷共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,叫做已知雙曲線的'共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.
⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設為.
例如:若雙曲線一條漸近線為且過,求雙曲線的方程?
解:令雙曲線的方程為:,代入得.
⑹直線與雙曲線的位置關系:
區(qū)域①:無切線,2條與漸近線平行的直線,合計2條;
區(qū)域②:即定點在雙曲線上,1條切線,2條與漸近線平行的直線,合計3條;
區(qū)域③:2條切線,2條與漸近線平行的直線,合計4條;
區(qū)域④:即定點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;
區(qū)域⑤:即過原點,無切線,無與漸近線平行的直線.
小結:過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數(shù)目可能有0、2、3、4條.
(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.
⑺若P在雙曲線,則常用結論1:P到焦點的距離為m=n,則P到兩準線的距離比為m︰n.
簡證:=.
常用結論2:從雙曲線一個焦點到另一條漸近線的距離等于b.
雙曲線方程知識點在高考中屬于比較重要的考察點,希望考生認真復習,深入掌握。
高二數(shù)學圓錐公式知識點
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應用
⑶數(shù)列:數(shù)列的有關概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應用
⑷三角函數(shù):有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質、三角函數(shù)的應用
⑸平面向量:有關概念與初等運算、坐標運算、數(shù)量積及其應用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
⑿導數(shù):導數(shù)的概念、求導、導數(shù)的應用
⒀復數(shù):復數(shù)的概念與運算
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標準方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱側面積S=c_h斜棱柱側面積S=c'_h
正棱錐側面積S=1/2c_h'正棱臺側面積S=1/2(c+c')h'
圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2
圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l
弧長公式l=a_ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2_l_r
錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長
柱體體積公式V=s_h圓柱體V=p_r2h
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關系X1+X2=-b/aX1_X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac0注:方程沒有實根,有共軛復數(shù)根
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
圓錐曲線的工作總結第6篇
1充分利用幾何圖形
解析幾何的研究對象就是幾何圖形及其性質,所以在處理解析幾何問題時,除了運用代數(shù)方程外,充分挖掘幾何條件,并結合平面幾何知識,這往往能減少計算量。
2充分利用韋達定理及“設而不求”的策略
我們經常設出弦的端點坐標而不求它,而是結合韋達定理求解,這種方法在有關斜率、中點等問題中常常用到。
3充分利用曲線系方程
利用曲線系方程可以避免求曲線的交點,因此也可以減少計算。
4充分利用橢圓的參數(shù)方程
橢圓的參數(shù)方程涉及到正、余弦,利用正、余弦的有界性,可以解決相關的求最值的問題.這也是我們常說的三角代換法。
學好數(shù)學的方法
1.數(shù)學要求具備熟練的計算能力,所以課后還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。
2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代家居設計與生活品質的提升
- 現(xiàn)代辦公環(huán)境中營銷自動化策略的實施
- Unit2 An Accident(說課稿)-2024-2025學年北師大版(三起)英語六年級上冊
- 3-1《百合花》(說課稿)高一語文同步高效課堂(統(tǒng)編版 必修上冊)
- 2023二年級數(shù)學上冊 七 分一分與除法第5課時 小熊開店說課稿 北師大版
- 3 天窗(說課稿)2023-2024學年部編版語文四年級下冊
- 《8和9的加、減法的應用》(說課稿)-2024-2025學年一年級上冊數(shù)學人教版
- Unit 1 Art Using language 2 說課稿 -2023-2024學年高中英語人教版(2019)選擇性必修第三冊
- Unit 5 Colours Lesson 1(說課稿)-2024-2025學年人教新起點版英語一年級上冊
- 2023四年級數(shù)學上冊 1 大數(shù)的認識第4課時 億以內數(shù)的大小比較說課稿 新人教版
- 2024年全國高考新課標卷物理真題(含答案)
- 生鮮超市未來工作計劃
- 勞動合同薪酬與績效約定書
- 消除醫(yī)療歧視管理制度
- 柴油機油-標準
- 足療店營銷策劃方案
- 《初三開學第一課 中考動員會 中考沖刺班會》課件
- 學校安全一崗雙責
- 2024年全國版圖知識競賽(小學組)考試題庫大全(含答案)
- 產后修復學習培訓課件
- 高考志愿咨詢培訓課件
評論
0/150
提交評論