2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁(yè)
2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁(yè)
2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁(yè)
2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁(yè)
2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省無錫市錫山區(qū)天一實(shí)驗(yàn)校中考數(shù)學(xué)考試模擬沖刺卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果菱形的一邊長(zhǎng)是8,那么它的周長(zhǎng)是()A.16 B.32 C.163 D.3232.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)3.已知關(guān)于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.54.如圖,在平面直角坐標(biāo)系xOy中,△由△繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)5.等腰三角形的兩邊長(zhǎng)分別為5和11,則它的周長(zhǎng)為()A.21 B.21或27 C.27 D.256.在某?!拔业闹袊?guó)夢(mèng)”演講比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績(jī)各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績(jī),還要了解這9名學(xué)生成績(jī)的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)7.某公園有A、B、C、D四個(gè)入口,每個(gè)游客都是隨機(jī)從一個(gè)入口進(jìn)入公園,則甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率是()A. B. C. D.8.下列運(yùn)算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a9.已知點(diǎn)M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)10.如果邊長(zhǎng)相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°11.的化簡(jiǎn)結(jié)果為A.3 B. C. D.912.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.48二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.矩形ABCD中,AB=8,AD=6,E為BC邊上一點(diǎn),將△ABE沿著AE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△EFC為直角三角形時(shí)BE=_____.14.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.15.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動(dòng)一周,點(diǎn)恰好與點(diǎn)C重合,那么的值等于________.(結(jié)果保留兩位小數(shù))16.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE=2,則CE的長(zhǎng)為_______17.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計(jì)算出1+3+32+33+…+32018的值為_____.18.若n邊形的內(nèi)角和是它的外角和的2倍,則n=.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當(dāng)∠BOP=300時(shí),求點(diǎn)P的坐標(biāo);(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).20.(6分)如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點(diǎn).如圖(2)①求∠CPD的度數(shù);②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).21.(6分)為營(yíng)造“安全出行”的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點(diǎn)C,橫桿DE∥AB,攝像頭EF⊥DE于點(diǎn)E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點(diǎn)F到地面AB的距離.(精確到百分位)22.(8分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.23.(8分)一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.求袋子中白球的個(gè)數(shù);(請(qǐng)通過列式或列方程解答)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)24.(10分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對(duì)應(yīng)值如表x

﹣1

1

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<1;②當(dāng)x>1時(shí),y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個(gè)根;④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.25.(10分)小馬虎做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.小馬虎看答案以后知道,請(qǐng)你替小馬虎求出系數(shù)“”;在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為.請(qǐng)你替小馬虎求出“”的正確答案.26.(12分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);(2)P為第二象限拋物線上的一個(gè)動(dòng)點(diǎn),求△ACP面積的最大值.27.(12分)(2013年四川綿陽(yáng)12分)如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若E是的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)菱形的四邊相等,可得周長(zhǎng)【詳解】菱形的四邊相等∴菱形的周長(zhǎng)=4×8=32故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)2、C【解析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對(duì)相似三角形.故選C.3、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.4、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對(duì)應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對(duì)應(yīng)點(diǎn)的連線CC′、AA′的垂直平分線過點(diǎn)(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標(biāo)是P(1,-1)故選B.考點(diǎn):坐標(biāo)與圖形變化—旋轉(zhuǎn).5、C【解析】試題分析:分類討論:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系;當(dāng)腰取11,則底邊為5,根據(jù)等腰三角形的性質(zhì)得到另外一邊為11,然后計(jì)算周長(zhǎng).解:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系,所以這種情況不存在;當(dāng)腰取11,則底邊為5,則三角形的周長(zhǎng)=11+11+5=1.故選C.考點(diǎn):等腰三角形的性質(zhì);三角形三邊關(guān)系.6、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù))的意義,9人成績(jī)的中位數(shù)是第5名的成績(jī).參賽選手要想知道自己是否能進(jìn)入前5名,只需要了解自己的成績(jī)以及全部成績(jī)的中位數(shù),比較即可.【詳解】由于總共有9個(gè)人,且他們的分?jǐn)?shù)互不相同,第5的成績(jī)是中位數(shù),要判斷是否進(jìn)入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點(diǎn)睛】本題考查了統(tǒng)計(jì)量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.7、B【解析】

畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果數(shù),再利用概率公式計(jì)算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率為=,故選B.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.8、B【解析】

先根據(jù)同底數(shù)冪的乘法法則進(jìn)行運(yùn)算即可?!驹斀狻緼.;故本選項(xiàng)錯(cuò)誤;B.﹣3a2?4a3=﹣12a5;故本選項(xiàng)正確;C.;故本選項(xiàng)錯(cuò)誤;D.不是同類項(xiàng)不能合并;故本選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項(xiàng)分別求出每個(gè)式子的值,再判斷即可.9、A【解析】因?yàn)辄c(diǎn)M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個(gè)答案中只有A符合條件.故選A10、C【解析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進(jìn)而求解.【詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,

∴∠1=108°-90°=18°.故選C【點(diǎn)睛】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.11、A【解析】試題分析:根據(jù)二次根式的計(jì)算化簡(jiǎn)可得:.故選A.考點(diǎn):二次根式的化簡(jiǎn)12、D【解析】解:如圖取CD的中點(diǎn)F,連接BF延長(zhǎng)BF交AD的延長(zhǎng)線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點(diǎn)睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、3或1【解析】

分當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)和當(dāng)點(diǎn)F落在AD邊上時(shí)兩種情況求BE得長(zhǎng)即可.【詳解】當(dāng)△CEF為直角三角形時(shí),有兩種情況:當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時(shí),只能得到∠EFC=90°,∴點(diǎn)A、F、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點(diǎn)F落在AD邊上時(shí),如圖2所示.此時(shí)ABEF為正方形,∴BE=AB=1.綜上所述,BE的長(zhǎng)為3或1.故答案為3或1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識(shí)點(diǎn),解題時(shí)要注意分情況討論.14、1.【解析】

在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長(zhǎng)求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點(diǎn)睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.15、3.1【解析】分析:由題意可知:BC的長(zhǎng)就是⊙O的周長(zhǎng),列式即可得出結(jié)論.詳解:∵以AB為直徑的⊙O沿著滾動(dòng)一周,點(diǎn)恰好與點(diǎn)C重合,∴BC的長(zhǎng)就是⊙O的周長(zhǎng),∴π?AB=BC,∴=π≈3.1.故答案為3.1.點(diǎn)睛:本題考查了圓的周長(zhǎng)以及線段的比.解題的關(guān)鍵是弄懂BC的長(zhǎng)就是⊙O的周長(zhǎng).16、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點(diǎn)E在AC上,∴當(dāng)E在點(diǎn)O左邊時(shí)當(dāng)點(diǎn)E在點(diǎn)O右邊時(shí)∴或;故答案為或.點(diǎn)睛:考查菱形的性質(zhì),注意分類討論思想在數(shù)學(xué)中的應(yīng)用,不要漏解.17、【解析】

仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.18、6【解析】此題涉及多邊形內(nèi)角和和外角和定理多邊形內(nèi)角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=6三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(Ⅰ)點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).【解析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點(diǎn)P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長(zhǎng),然后利用相似三角形的對(duì)應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).過點(diǎn)P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡(jiǎn),得.解得:.∴點(diǎn)P的坐標(biāo)為(,1)或(,1).20、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對(duì)角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長(zhǎng)代入求出PB的長(zhǎng)即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對(duì)邊相等,兩個(gè)角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對(duì)應(yīng)角相等得到∠1=∠2,再由對(duì)頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對(duì)頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對(duì)應(yīng)角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進(jìn)而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點(diǎn)為△ABC的費(fèi)馬點(diǎn).考點(diǎn):相似形綜合題21、(1)(2)6.03米【解析】

分析:延長(zhǎng)ED,AM交于點(diǎn)P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長(zhǎng)ED,AM交于點(diǎn)P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點(diǎn)F到地面AB的距離為6.03米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高線或垂線構(gòu)造直角三角形.22、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點(diǎn):用列舉法求概率.23、(1)袋子中白球有2個(gè);(2)見解析,.【解析】

(1)首先設(shè)袋子中白球有x個(gè),利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【詳解】解:(1)設(shè)袋子中白球有x個(gè),根據(jù)題意得:,解得:x=2,經(jīng)檢驗(yàn),x=2是原分式方程的解,∴袋子中白球有2個(gè);(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.注意掌握方程思想的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.24、①③④.【解析】試題分析:∵x=﹣1時(shí)y=﹣1,x=1時(shí),y=3,x=1時(shí),y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對(duì)稱軸為直線,所以,當(dāng)x>時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個(gè)根,正確,故③正確;﹣1<x<3時(shí),ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點(diǎn)】二次函數(shù)的性質(zhì).25、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】

(1)根據(jù)整式加減法則可求出二次項(xiàng)系數(shù);(2)表示出多項(xiàng)式,然后根據(jù)的結(jié)果求出多項(xiàng)式,計(jì)算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論