版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第六章數(shù)據(jù)的分析回顧與思考數(shù)學(xué)八年級上冊BS版要點回顧典例講練目錄CONTENTS
1.
平均數(shù)與加權(quán)平均數(shù).
注意:權(quán)的形式可以是整數(shù)、比和百分?jǐn)?shù).
大小順序
最中間
兩個數(shù)據(jù)
平均數(shù)
3.
眾數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)
的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).
眾數(shù)是出現(xiàn)次數(shù)最多的數(shù),而不是數(shù)據(jù)出現(xiàn)的次數(shù).一組數(shù)據(jù)的
中位數(shù)只有一個,但眾數(shù)可能有多個,甚至沒有.4.
平均數(shù)、中位數(shù)和眾數(shù)的相同與區(qū)別.相同:都是用來描述數(shù)據(jù)
的統(tǒng)計量;都可用來反
映數(shù)據(jù)的一般水平;都可用來作為一組數(shù)據(jù)的代表.最多
集中趨勢
區(qū)別:平均數(shù)用來代表數(shù)據(jù)的總體“
水平”;平均數(shù)
與每一個數(shù)據(jù)都有關(guān),其中任何數(shù)據(jù)的變動都會引起平均數(shù)的
變動;缺點是易受極端值的影響.中位數(shù)用來代表一組數(shù)據(jù)的
“
水平”;中位數(shù)與數(shù)據(jù)的排列位置有關(guān),不受數(shù)據(jù)
極端值的影響;眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),用來
代表一組數(shù)據(jù)的“
水平”,但當(dāng)一組數(shù)據(jù)中的每一個
數(shù)據(jù)都出現(xiàn)相同次數(shù)時,這組數(shù)據(jù)就沒有眾數(shù).平均
中等
多數(shù)
離散程度
最大數(shù)據(jù)
最小數(shù)據(jù)
(4)數(shù)據(jù)的穩(wěn)定性:一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就
越穩(wěn)定.①極差僅表示一組數(shù)據(jù)變化范圍的大小,只對極端值較為敏
感,而不能表示其他意義.②方差和標(biāo)準(zhǔn)差都是用來描述一組數(shù)據(jù)波動情況的特征數(shù),
常用來比較兩組數(shù)據(jù)的波動大小.方差較大的波動較大,方
差較小的波動較小.在解決實際問題時,常用樣本的方差估
計總體的方差.6.
平均數(shù)、方差、標(biāo)準(zhǔn)差的性質(zhì).樣本數(shù)據(jù)平均數(shù)方差標(biāo)準(zhǔn)差
x1,
x2,
x3,…,
xn
s2
s
x1+
a
,
x2+
a
,
x3+
a
,…,
xn
+
a
?
?
?
kx1,
kx2,
kx3,…,
kxn
?
?
?
kx1+
a
,
kx2+
a
,
kx3+
a
,…,
kxn
+
a
?
?
?
s2
s
k2
s2
ks
k2
s2
ks
數(shù)學(xué)八年級上冊BS版02典例講練
要點一
平均數(shù)、中位數(shù)與眾數(shù)
某校對所有九年級學(xué)生進(jìn)行了數(shù)學(xué)運算水平(數(shù)學(xué)核心素
養(yǎng)組成部分)的測試,并隨機(jī)抽取了50名學(xué)生的測試成績進(jìn)行
整理和分析.成績等級
D
等
C
等
B
等
A
等分?jǐn)?shù)60<
x
≤7070<
x
≤8080<
x
≤9090<
x
≤100人數(shù)
a
131216其中B等成績(單位:分)分別為:81,82,84,85,85,86,
87,89,90,90,90,90.成績頻數(shù)分布表根據(jù)以上信息,解答下列問題:(1)在80<
x
≤90這一組成績的眾數(shù)是
?;(2)表中
a
=
,本次測試成績的中位數(shù)為
?;(3)測試成績高于85分為優(yōu)秀,請估計該校九年級400名學(xué)生
中測試成績?yōu)閮?yōu)秀的人數(shù).【思路導(dǎo)航】(1)根據(jù)眾數(shù)的定義求解即可;(2)根據(jù)各等
級人數(shù)之和等于總?cè)藬?shù)可得
a
的值,再依據(jù)中位數(shù)的定義可
得;(3)根據(jù)樣本估計總體的方法計算即可.9
84.5
90
(1)【解析】在80<
x
≤90這一組成績的眾數(shù)是90.故答案為
90.
1.
王同學(xué)調(diào)查了本班學(xué)生最喜歡的體育項目情況,并繪制成如
圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,其中條形統(tǒng)計圖被撕壞了
一部分,則
m
與
n
的和為(
C
)
CA.24B.26C.52D.54
2.
若數(shù)據(jù)1,2,
a
的平均數(shù)為2,數(shù)據(jù)-2,
a
,2,1,
b
的眾數(shù)
為-2,則數(shù)據(jù)-2,
a
,2,1,
b
的中位數(shù)為
?.1
要點二
極差、方差與標(biāo)準(zhǔn)差
(1)甲、乙兩位同學(xué)5次數(shù)學(xué)選拔賽的成績(百分制)統(tǒng)
計的情況如下表(單位:分)已知他們5次考試的總成績相同.參賽者第1次第2次第3次第4次第5次甲8040705060乙705070
a
70①根據(jù)以上信息,可知
a
=
,甲同學(xué)成績的極差
為
?;40
40
【思路導(dǎo)航】①用甲的總成績減去乙第1,2,3,5次的成績可
得
a
的值,用甲成績的最大值減去最小值可得其極差;②根據(jù)
平均數(shù)和方差的定義求解即可得答案;③根據(jù)平均數(shù)和方差對
穩(wěn)定性的影響即可得答案.①【解析】
a
=(80+40+70+50+60)-(70+50+70+
70)=40,甲同學(xué)成績的極差為80-40=40.故答案為40,40.
【點撥】在比較兩組數(shù)據(jù)的穩(wěn)定性時,一般先看平均數(shù),在平
均數(shù)相同或相近的情況下,再分析穩(wěn)定性.方差是反映數(shù)據(jù)波動
大小的量,因此可通過比較方差的大小來解決問題.(2)已知數(shù)據(jù)
x1,
x2,
x3的平均數(shù)為
a
,方差是
b
,則數(shù)據(jù)2
x1
+1,2
x2+1,2
x3+1的平均數(shù)為
,方差為
?.【思路導(dǎo)航】根據(jù)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平
均數(shù)加上或減去同一個數(shù),方差不變;數(shù)據(jù)都乘同一個數(shù),平
均數(shù)乘這個數(shù),方差乘這個數(shù)的平方求解.【解析】因為數(shù)據(jù)
x1,
x2,
x3的平均數(shù)為
a
,方差是
b
,所以數(shù)據(jù)2
x1+1,2
x2+1,2
x3+1的平均數(shù)為2
a
+1,方差為22
b
=4
b
.故答案為2
a
+1,4
b
.【點撥】平均數(shù)、方差的性質(zhì):2
a
+1
4
b
樣本數(shù)據(jù)平均數(shù)方差標(biāo)準(zhǔn)差
x1,
x2,
x3,…,
xn
s2
s
x1+
a
,
x2+
a
,
x3+
a
,…,
xn
+
a
s2
s
kx1,
kx2,
kx3,…,
kxn
k2
s2
ks
kx1+
a
,
kx2+
a
,
kx3+
a
,…,
kxn
+
a
k2
s2
ks
1.
若數(shù)據(jù)
x1,
x2,
x3,
x4,
x5,
x6的平均數(shù)是2,方差是5,則數(shù)
據(jù)2
x1+3,2
x2+3,2
x3+3,2
x4+3,2
x5+3,2
x6+3的平均數(shù)
和方差分別是
和
?.2.
已知一組數(shù)據(jù)-1,0,3,5,
x
的極差是7,則
x
的值可能
是
?.3.
小冬與小夏是某中學(xué)籃球隊的隊員,在最近五場球賽中的得
分如下表所示(單位:分):7
20
-2或6
3.
小冬與小夏是某中學(xué)籃球隊的隊員,在最近五場球賽中的得
分如下表所示(單位:分):隊員第一場第二場第三場第四場第五場小冬10139810小夏12213212(1)根據(jù)上述信息,將下表補充完整.隊員平均數(shù)/分中位數(shù)/分眾數(shù)/分方差小冬10
?102.8小夏1012
?52.410
2
(1)【解析】由題意可知,小冬得分的中位數(shù)是10,小夏得分
的眾數(shù)是2.故從上到下的答案為10,2.(2)若教練選小冬去參加下一場比賽,你認(rèn)為教練選擇小冬的
理由是什么?(2)解:教練選擇小冬的理由:小冬和小夏的平均分相同,小
冬得分的方差小于小夏得分的方差,即小冬的得分更穩(wěn)定.(3)解:由題意,得小冬六場球賽的得分情況從小到大的排列
是8,9,10,10,10,13.
(3)若小冬的下一場球賽的得分是10分,則小冬得分的四個統(tǒng)
計量(平均數(shù),眾數(shù),中位數(shù),方差)中,哪些發(fā)生了變化?
變大了還是變小了?要點三
統(tǒng)計圖表中的數(shù)據(jù)分析
為了引導(dǎo)學(xué)生學(xué)習(xí)禁毒知識、遠(yuǎn)離毒品侵害,某中學(xué)開展
了“全民禁毒,共享幸?!钡闹R競賽活動.現(xiàn)從該校七、八年
級中各隨機(jī)抽取20名學(xué)生的競賽成績進(jìn)行了整理分析,制成如
下統(tǒng)計圖表.七年級20名學(xué)生的競賽成績統(tǒng)計圖抽取七、八年級各20名學(xué)生的競賽成績分析表八年級20名學(xué)生的競賽成績統(tǒng)計圖年級平均數(shù)/分眾數(shù)/分中位數(shù)/分方差七7.557
a
2.75八7.55
b
82.25請根據(jù)相關(guān)信息,回答下列問題:(1)
a
=
,
b
=
?.7
8
(2)你認(rèn)為該校七、八年級中哪個年級學(xué)生掌握“禁毒知識”
較好?請說明理由(一條理由即可).【思路導(dǎo)航】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解即可;(2)
在七、八年級學(xué)生掌握“禁毒知識”的平均數(shù)相同的前提下,
比較方差的大小,從而得出答案(理由不唯一).
(2)解:八年級學(xué)生掌握“禁毒知識”較好,因為在七、八年
級學(xué)生掌握“禁毒知識”的平均數(shù)相同的前提下,八年級學(xué)生
成績的方差小,成績更穩(wěn)定.【點撥】(1)在扇形統(tǒng)計圖中:①所占比例最大部分所對應(yīng)的
數(shù)就是眾數(shù);②按從小到大的順序計算所占百分比之和,找到
50%和51%對應(yīng)的部分的平均數(shù)就是中位數(shù);③求平均數(shù)時,
先求出對應(yīng)部分的權(quán),再求解加權(quán)平均數(shù).(2)在條形統(tǒng)計圖
中:①最高的直條所對的橫軸上的數(shù)就是眾數(shù),②平均數(shù)一般
來說是加權(quán)平均數(shù);③求中位數(shù)時,按大小排序,取最中間的
數(shù)或最中間兩個的數(shù)的平均數(shù).(3)在折線統(tǒng)計圖中:①出現(xiàn)
次數(shù)最多的數(shù)是眾數(shù);②所求平均數(shù)是算術(shù)平均數(shù);③求中位
數(shù)的方法同條形統(tǒng)計圖.(4)數(shù)據(jù)的平均數(shù)、中位數(shù)代表的是集中趨勢,方差代表的是數(shù)據(jù)的離散程度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)市場推廣合作合同
- 2024年格力空調(diào)質(zhì)保與安裝服務(wù)協(xié)議
- 2025幼兒園園長聘用合同
- 渠道溝通機(jī)制建設(shè)增強(qiáng)協(xié)作效率
- 瑜伽館廣告牌建設(shè)合同
- 福建省福州市部分學(xué)校教學(xué)聯(lián)盟2023-2024學(xué)年高一上學(xué)期期末考試歷史試題(解析版)
- 北京市延慶區(qū)2023-2024學(xué)年高二上學(xué)期期末考試歷史試題(解析版)
- 三違行為預(yù)防與干預(yù)體系
- 河南省洛陽市2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 河北省邢臺市質(zhì)檢聯(lián)盟2025屆高三上學(xué)期11月期中考試數(shù)學(xué)試題(解析版)
- 吹風(fēng)機(jī)成品過程質(zhì)量控制檢查指引
- 中介人合作協(xié)議(模版)
- 財務(wù)管理制度-家電行業(yè)
- 班主任工作滿意度測評表
- 德國WMF壓力鍋使用手冊
- 瀝青路面施工監(jiān)理工作細(xì)則
- 《尋找消失的爸爸》(圖形)
- 《孤獨癥兒童-行為管理策略及行為治療課程》讀后總結(jié)
- 人教版八年級上冊英語單詞表默寫版(直接打印)
- PDCA循環(huán)在傳染病管理工作中的應(yīng)用
- 老師退休歡送會ppt課件
評論
0/150
提交評論